
WebLab-Deusto Documentation
Release 5.0

WebLab-Deusto authors

Oct 23, 2020

Contents

1 General 3

2 Users 29

3 Remote laboratory development and management 93

4 External systems 193

5 WebLab-Deusto Development 197

6 Appendixes 201

7 Indices and tables 215

i

ii

WebLab-Deusto Documentation, Release 5.0

Table of Contents

• Welcome to WebLab-Deusto’s documentation!

– General

– Users

– Remote laboratory development and management

– External systems

– WebLab-Deusto Development

– Appendixes

• Indices and tables

Contents 1

WebLab-Deusto Documentation, Release 5.0

2 Contents

CHAPTER 1

General

This section provides a general overview of the project.

1.1 Summary

WebLab-Deusto is an Open Source (BSD 2-clause license) remote laboratory management system developed in the
University of Deusto. A remote laboratory is a software and hardware solution that enables students to access equip-
ment which is physically located in a university, secondary school or research centre. There are many types of remote
laboratories (for physics, chemistry, electronics. . .). What WebLab-Deusto does is:

1. provide a set of APIs to develop new remote laboratories.

2. maintain remote laboratories developed on top of WebLab-Deusto: manage users, permissions, user tracking,
scheduling, etc.

3. share remote laboratories developed on top of WebLab-Deusto: let other universities or secondary schools use
your laboratories.

4. use remote laboratories provided by other universities (such as the University of Deusto).

If you want to see examples of running laboratories, try the demo version at:

https://weblab.deusto.es/weblab/

1.2 Screenshots

Table of Contents

• Screenshots

– User interface

3

http://www.weblab.deusto.es
http://opensource.org/licenses/BSD-2-Clause
http://www.deusto.es
https://weblab.deusto.es/weblab/

WebLab-Deusto Documentation, Release 5.0

– Tools

* Administration panel

* Server tester

– Integrations

* Facebook (OAuth 2.0)

* VISIR

1.2.1 User interface

4 Chapter 1. General

WebLab-Deusto Documentation, Release 5.0

1.2.2 Tools

1.2. Screenshots 5

WebLab-Deusto Documentation, Release 5.0

Administration panel

6 Chapter 1. General

WebLab-Deusto Documentation, Release 5.0

1.2. Screenshots 7

WebLab-Deusto Documentation, Release 5.0

Server tester

8 Chapter 1. General

WebLab-Deusto Documentation, Release 5.0

1.2.3 Integrations

Facebook (OAuth 2.0)

1.2. Screenshots 9

WebLab-Deusto Documentation, Release 5.0

VISIR

1.3 Sample laboratories

This section presents the a set of sample laboratories available in the University of Deusto.

Note: The terms laboratory, experiment or rig are a common problem in the remote laboratories literature. We
will use laboratory or experiment identically in this document. But take into account that in the case of the CPLD
there is a single laboratory but there are two copies (commonly called rigs) of them, and students are balanced among
them. But on the Robot laboratory, there are three different laboratories running on the same single rig. This way,
WebLab-Deusto separates resources (rigs) from laboratories.

Table of Contents

• Sample laboratories

– FPGA

– CPLD

– Aquarium

– Robot

* robot-proglist

10 Chapter 1. General

WebLab-Deusto Documentation, Release 5.0

* robot-movement

* robot-standard

· Specifics

· Example

· Further details:

– VISIR

– ud-logic

– Virtual Machine lab

1.3.1 FPGA

ud-fpga lets you remotely practise with a Field Programmable Gate Array. Through the Xilinx software, you can write
a FPGA program locally as you normally would. Once the program is compiled, and ready to be tested, you should
simply upload the binary “.bit” file through the experiment.

ud-fpga will automatically program the FPGA board with the binary you provided, and start running it. To see the
results, a Webcam is of course provided. You may also interact with the board remotely, by using the provided
widgets. Though the widgets themselves might appear artificial, they will send a signal to the board just like their
physical counterparts would.

However, due to certain safety concerns, in the demo version you can’t upload your own file for this demo. Instead, a
specific demo program (which has already been uploaded) will be used. Everything else will work as in the standard
FPGA experiment.

1.3. Sample laboratories 11

https://www.weblab.deusto.es/weblab/client/#page=experiment&exp.category=FPGA%20experiments&exp.name=ud-demo-fpga

WebLab-Deusto Documentation, Release 5.0

The FPGA laboratory, as other WebLab-Deusto laboratories (PIC or CPLD), is developed within the WebLab-Box.
On the WebLab-Box, the device, as well as a fit-pc, a PIC microcontroller, a camera, lighting system and networking
materials is installed, so as to make it easier to create and deploy new laboratories.

• Target audience: Electronics Engineering students.

1.3.2 CPLD

ud-demo-pld lets you remotely practise with a Programmable Logic Device.

With the standard PLD experiment, through the Xilinx software you can write a PLD program locally as you normally
would. Once the program is compiled, and ready to be tested, you can simply upload the binary “.jed” file, and it will
be programmed on the physical board and run.

However, due to certain safety concerns, you can’t upload your own file for this demo. Instead, a specific demo pro-
gram (which has already been uploaded) will be used. Everything else will work as in the standard FPGA experiment.

That binary file will be automatically programmed into the board, and it will start running. To see the results, a
Webcam is provided. You may also interact with the board remotely, by using the provided widgets. Though the
widgets themselves might appear artificial, they will send a signal to the board just like their physical counterparts
would.

As the FPGA, the CPLD laboratory is running in the WebLab-Box. However, two different laboratories are available.
The queue of students is balanced between both copies, so it goes twice faster.

12 Chapter 1. General

http://www.fit-pc.com/
https://www.weblab.deusto.es/weblab/client/#page=experiment&exp.category=PLD%20experiments&exp.name=ud-demo-pld
http://en.wikipedia.org/wiki/CPLD

WebLab-Deusto Documentation, Release 5.0

• Target audience: Electronics Engineering students.

• Video: http://www.youtube.com/watch?v=zON7oYtssrw

1.3.3 Aquarium

The aquarium laboratory creates an access to a real aquarium located in the University of Deusto. On it, it is possible
to feed the fish, turn on and off the lights, and, if the submarine is in the water and it is charged, control the submarine.
The problem is that most of the time, the submarine is out of battery so we only put it in the fishtank certain days.

Regarding feeding the fish, it may seem dangerous, but it is not. The system feeds them automatically three times a day,
every 8 hour. If a user feeds them, then it does not let any other user to feed them before the next shift, guaranteeing
that they are only fed three times. So go ahead and try it!

The initial rationale behind this laboratory is that groups of primary school students are responsible of the life of these

1.3. Sample laboratories 13

http://www.youtube.com/watch?v=zON7oYtssrw
https://www.weblab.deusto.es/weblab/client/#page=experiment&exp.category=Aquatic%20experiments&exp.name=submarine

WebLab-Deusto Documentation, Release 5.0

fish (even if they are not under a real danger). Teachers may know which groups of students have feed them correctly,
which students didn’t forget and which students coordinated correctly so no one overfed the fish.

However, at the time of this writing ongoing work is being done for adding more sensors to this laboratory, so stay
tuned ;-)

From a technical perspective, the whole laboratory is deployed in http://fishtank.weblab.deusto.es/, which uses a low
cost ARM microprocessor called IGEPv2. So basically it is an example of federated system.

• Target audience: initially, primary school students. Right now the focus is changing to take into account
physics principles with sensors.

1.3.4 Robot

The robot laboratory uses the commercial robot Azkar-bot, with an attached microcontroller. WebLab-Deusto manages
to establish that three different learning activities are using the same equipment, so the scheduling system will queue
other users internally.

• Video: http://www.youtube.com/watch?v=1WWAZVyuOBg

robot-proglist

robot-proglist lets you choose one among a few of predefined programs to program the bot with.

The programs currently available are the following:

Follow black line

The robot will first move randomly while avoiding obstacles (walls) until it finds the black line. It will then position
itself on the line and follow it using its infrared sensors

Walk alone

Will simply walk around while avoiding any obstacles in its way.

Interactive Demo

Programs it with the same program that is used in the robot-movement. Doesn’t really do much because there are no
controls available in this mode.

14 Chapter 1. General

http://fishtank.weblab.deusto.es/
http://igep.es/index.php?option=com_content&view=article&id=46&Itemid=55
http://www.youtube.com/watch?v=1WWAZVyuOBg
https://www.weblab.deusto.es/weblab/client/#page=experiment&exp.category=Robot%20experiments&exp.name=robot-proglist

WebLab-Deusto Documentation, Release 5.0

Turn left & turn right

Rotates left and right, non-stop.

robot-movement

robot-movement lets you control a bot remotely. The bot can move forward or backward, and turn to both sides.

To make the bot move, simply click on the appropriate button. Alternatively, you can control the bot by using the
arrows on your keyboard. Remember that the bot will move according to its own position, and not to the position of
the camera.

The bot will not obey you if it finds a wall in its way, in which case it will try to avoid it.

1.3. Sample laboratories 15

https://www.weblab.deusto.es/weblab/client/#page=experiment&exp.category=Robot%20experiments&exp.name=robot-movement

WebLab-Deusto Documentation, Release 5.0

robot-standard

robot-standard lets you program the bot yourself, with any program you wish.

The bot uses a PIC processor, so the program should be written using the Xilinx PIC compiler. It is noteworthy that
the bot has, among other things, infrared sensors, to which the developer has access.

The MPLAB IDE used to build the PIC programs can be downloaded for free from http://www.microchip.com.

Specifics

The microcontroller model of the robot is a PIC 18F4550. It has two different motors for each wheel. The motors can
go either forward or backward. It also has two obstacle sensors, which can be used to avoid the walls, and two infrared
sensors, which can be used to detect the line.

Obstacle sensors are set to 1 if an obstacle is detected, while infrared sensors are set to 1 if the black line is detected.

Available pins are set up as follows:

#define motorLeftFwd PORTC,1 ;Forward bit of left Motor
#define motorLeftBck PORTC,0 ;Back bit of left Motor
#define motorRightFwd PORTD,3 ;Forward bit of right Motor
#define motorRightBck PORTC,2 ;Back bit of right Motor
#define obstacleLeft PORTA,3 ;Right obstacle sensor
#define obstacleRight PORTA,2 ;Left obstacle sensor
#define infraredRight PORTA,1 ;Right infrared sensor
#define infraredLeft PORTA,0 ;Left infrared sensor

It is noteworthy that the bot’s firmware relies on a a bootloader, which means that PIC programs must start after a
certain number of bytes. This can be seen in the provided example.

Programs should be compiled using absolute addresses (no relocation).

Example

The following program makes the robot run back and forth while trying to avoid the walls:

include "p18F4550.inc" ; including the header file of PIC 18F4550
radix hex ; Unspecified literal hexadecimal-encoded

;********************************Label
→˓Definition***************************************
#define motorLeftFwd PORTC,1 ;Forward bit of left Motor
#define motorLeftBck PORTC,0 ;Back bit of left Motor
#define motorRightFwd PORTD,3 ;Forward bit of right Motor
#define motorRightBck PORTC,2 ;Back bit of right Motor
#define obstacleLeft PORTA,3 ;Right obstacle sensor
#define obstacleRight PORTA,2 ;Left obstacle sensor

temp1 equ 0x00 ;variable temp1 asociada a registro 0x000 de prop. General
temp2 equ 0x01 ;variable temp2 asociada a registro 0x001 de prop. General
temp3 equ 0x02 ;variable temp3 asociada a registro 0x002 de prop. general

(continues on next page)

16 Chapter 1. General

https://www.weblab.deusto.es/weblab/client/#page=experiment&exp.category=Robot%20experiments&exp.name=robot-standard
http://www.microchip.com

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

Org 0x200 ; Program begins at address 0x200
;********************************Configuration
→˓Section***************************************

movlw b'11111000'
movwf TRISC ;RC0, RC1 y RC2 sets as OUTPUTS
movlw b'11110111'
movwf TRISD ;RD3 set as OUTPUT (Motor ports set

→˓as outputs)
setf TRISA ;full PORTA set as INPUT (including

→˓sensors)
movlw 0x0f
movwf ADCON1 ;All ports digitals
movlw 0x07
movwf CMCON ;Comparators Off

;********************************Program Starts***************************************
goForward bsf motorRightFwd

bsf motorLeftFwd
bcf motorRightBck
bcf motorLeftBck

detectRight btfss obstacleRight ; if sensor is “1” skip next instruction (no
→˓detect)

bra turnLeft ; if previous instruction does not
→˓jump turn left

; to avoid de obstacle detected

detectLeft btfss obstacleLeft ; if sensor is “1” skip next instruction (no
→˓detect)

bra turnRight ; if previous instruction does not jump turn
→˓Right

; to avoid de obstacle detected
bra goForward ;

turnLeft Bsf motorRightFwd
bcf motorLeftFwd
bcf motorRightBck
bsf motorLeftBck
rcall halfSec ;Wait 0,6s
bra detectRight

turnRight Bcf motorRightFwd
bsf motorLeftFwd
bsf motorRightBck
bcf motorLeftBck
rcall halfSec ;Wait 0,6s
bra detectLeft

halfSec Movlw .3
movwf temp1
clrf temp2
clrf temp3 ; Init vars (temp0=8, temp1=0 y

→˓temp2=0)
bucle1 decfsz temp1, F ; First loop is repeated 8 times.

bra bucle2
return

bucle2 decfsz temp2, F ; Second Loop is repeated 256 times
→˓for each

(continues on next page)

1.3. Sample laboratories 17

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

bra bucle3 ;iteration of the first loop
bra bucle1

bucle3 decfsz temp3, F ; Third bucle is repeated 256 times
→˓for each

bra bucle3 ;iteration of the second loop
bra bucle2

;considering that each loop takes 3 cycles internal clock
;(1 jump + 1 decrease), the loop takes 3 * 256 * 256 * 3 = 589825
;as 1 cycle is 1 us, rutine takes aprox. 0.6 s

End

Further details:

Full documentation may be downloaded from:

• English: http://www.weblab.deusto.es/pub/docs/robot_module_english.docx

• Spanish: http://www.weblab.deusto.es/pub/docs/robot_module_spanish.docx

• Target audience: engineering students in general, certain secondary schools.

1.3.5 VISIR

The VISIR experiment lets you access the BTH OpenLabs VISIR through WebLab-Deusto.

BTH OpenLabs VISIR (Virtual Instrument Systems In Reality) is a Remote Laboratory developed in the Blekinge
Institute of Technology, which supports remote experimentation with real electronic circuits.

Students create circuits using the web interface, such as the following (where two resistors, of 10k and 1k are placed
in serial and connected to the Digital MultiMeter):

18 Chapter 1. General

http://www.weblab.deusto.es/pub/docs/robot_module_english.docx
http://www.weblab.deusto.es/pub/docs/robot_module_spanish.docx
https://www.weblab.deusto.es/weblab/client/#page=experiment&exp.category=Visir%20experiments&exp.name=visir
http://openlabs.bth.se/electronics
http://www.bth.se
http://www.bth.se

WebLab-Deusto Documentation, Release 5.0

And as a result of this, the digital multimeter will show the sum of the two resistors:

This is possible given that VISIR uses a switching matrix, where all the resistors and other components are located,

1.3. Sample laboratories 19

WebLab-Deusto Documentation, Release 5.0

and with a set of relays it creates the circuit requested by the student:

Furthermore, multiple students can access VISIR and take different measurements at the very same time. VISIR will
create each circuit and take the measurement each time.

There is more information in the website of the VISIR project or in related papers.

• Target audience: It depends on how many principles are taught. It has been used with secondary school
students, as well as with electronics engineering courses.

• Video: http://www.youtube.com/watch?v=vI5aM6Yq3S4

1.3.6 ud-logic

ud-logic is a simple game implemented as an experiment. Players are presented with a circuit diagram made up of 6
connected logic gates. Five of these gates show the type of gate: AND, NAND, OR, NOR or XOR. The symbols, as
described in the wikipedia, are the following:

Name Image

AND

OR

XOR

NAND

NOR

Players must choose the type of the sixth gate so the result of the circuit is 1. Sometimes, several types might yield the
desired result, and they will all be considered correct.

When the players succeed, they are awarded one point and a new diagram is generated and they may choose a gate
again. The process continues until the time expires or a wrong gate is chosen. When the process finishes, players can
see their position in the ranking linked. The more points they get in the provided time, the higher they rank.

This experiment, for demonstration purposes, is usually connected to a hardware board, which can be seen through
the provided Webcam stream. Thus, notice that whenever the gate choice is right, a message will appear in the board’s
screen, and the LEDs of the board will lit.

20 Chapter 1. General

http://openlabs.bth.se/electronics
http://scholar.google.es/scholar?q=visir+electronics
http://www.youtube.com/watch?v=vI5aM6Yq3S4
https://www.weblab.deusto.es/weblab/client/#page=experiment&exp.category=PIC%20experiments&exp.name=ud-logic
http://en.wikipedia.org/wiki/Logic_gate#Symbols

WebLab-Deusto Documentation, Release 5.0

In the example above, in red it is written what the results will be, regardless the value of the unknown gate. For
instance, in the upper level, 1 NOR 0 is 0 (1 OR 0 is 1, and not 1 is 0). When solving the whole circuit, it is clear that
the final output, which must be 1, is the result of ? AND 1, being ? the result of the unknown gate.

Therefore, we need to have 1 as output of the unknown gate. So the question is: which gate has 0 and 0 as inputs and
1 as output? AND, OR and XOR fail to do this, so the solutions in this case are NOR or NAND.

• Target audience: secondary school students, as well as first course of certain engineerings.

1.3.7 Virtual Machine lab

The linux-vm experiment gives you full access to a virtual machine running the Ubuntu Linux distribution.

The user is presented with a few demo programs, among which is a sample Labview application. The user is free to
do whatever he wishes on the machine for the assigned time, and the virtual machine will be reset by Weblab to its
original state once the session ends. For instance, you can test that the sudoku game running in the virtual machine is
always the same, since the state is always restored.

The purpose of this experiment is mainly to showcase WebLab’s ability to host easy-to-develop unmanaged experi-
ments.

More detailed and technical information on VM-based experiments is available here.

1.3. Sample laboratories 21

https://www.weblab.deusto.es/weblab/client/#page=experiment&exp.category=VM%20experiments&exp.name=ud-linux-vm

WebLab-Deusto Documentation, Release 5.0

• Target audience: It depends on what equipment is used internally. The one running in the demo is only for
demonstration purposes.

• Video: http://www.youtube.com/watch?v=b-L2LXRr23A

1.4 Federation

WebLab-Deusto natively supports federating remote laboratories. This means that if two universities install WebLab-
Deusto, any of the systems will be able to consume laboratories provided by the other university.

22 Chapter 1. General

http://www.youtube.com/watch?v=b-L2LXRr23A

WebLab-Deusto Documentation, Release 5.0

Table of Contents

• Federation

– See it in action

– Features

* Transitivity

* Federated load balance

– Examples

1.4.1 See it in action

When you run the WebLab-Deusto demo, there is a particular laboratory called submarine. If you run it, you’ll
see that whenever it is reserved, the web page redirects you to other domain (from www.weblab.deusto.es to fish-
tank.weblab.deusto.es). Internally, there are two independent WebLab-Deusto deployments there: one is the main
system at Deusto, the other is a constrained system running in an ARM device (called IGEPv2). The first one (in this
case, the consumer) is telling the second one (provider), “Hi, I’m ‘deusto’, and I want to use this laboratory that I’m
granted for 250 seconds for a local user here called ‘demo’”. Later, the consumer will be requesting the provider for
the user tracking, so the administrators of WebLab-Deusto will be able to track the ‘demo’ user.

Other way to test it is by deploying WebLab-Deusto (the basic default installation is a straightforward process). By

1.4. Federation 23

https://www.weblab.deusto.es/weblab/

WebLab-Deusto Documentation, Release 5.0

default, the installation is a consumer of a federated system which is the main server of WebLab-Deusto. By adding
different users and granting them permissions to the robots lab, and after accessing the lab with this user you’ll be able
to see in the administrator panel that it has been used.

Finally, you can also see the federation video.

1.4.2 Features

Two main features are provided by WebLab-Deusto:

Transitivity

If you’re a provider of a laboratory, your consumers may technically re-share this laboratory. Basically, this enables
subcontracting laboratories. See the transitive federation video.

24 Chapter 1. General

http://www.youtube.com/watch?v=TMdSYlFErX0
http://www.youtube.com/watch?v=tRMwoliXy5Q

WebLab-Deusto Documentation, Release 5.0

Federated load balance

If there are multiple providers of a copy of a laboratory, you can balance the load of users among them automatically.

1.4.3 Examples

Other WebLab-Deusto deployments (in addition to the one in University of Deusto):

• LabsLand: https://weblab.labsland.com

• UNED: https://weblab.ieec.uned.es/

• HBRS: https://fpga-vision-lab.h-brs.de/weblab/

• Slovenská technická univerzita: http://weblab.chtf.stuba.sk/

• UPNA: https://weblab.unavarra.es/

• TU-Dortmund: https://weblab.zhb.tu-dortmund.de

• FH Aachen: https://weblab.fh-aachen.de

• UGA: https://remotelab.engr.uga.edu

• ISEP: https://openlabs.isep.ipp.pt/weblab/

• UNED (Costa Rica): https://labremoto.uned.ac.cr/weblab/

• UNAD: https://lab-remoto-etr.unad.edu.co/weblab/

1.4. Federation 25

https://weblab.deusto.es/weblab/
https://labsland.com
https://weblab.labsland.com
http://www.uned.es/
https://weblab.ieec.uned.es/
http://fpga-vision-lab.h-brs.de/weblab/
https://fpga-vision-lab.h-brs.de/weblab/
http://www.kirp.chtf.stuba.sk/
http://weblab.chtf.stuba.sk/
https://www.unavarra.es
https://weblab.unavarra.es/
https://www.zhb.tu-dortmund.de
https://weblab.zhb.tu-dortmund.de
https://www.fh-aachen.de
https://weblab.fh-aachen.de
https://www.uga.edu
https://remotelab.engr.uga.edu
https://www.isep.ipp.pt
https://openlabs.isep.ipp.pt/weblab/
https://www.uned.ac.cr/
https://labremoto.uned.ac.cr/weblab/
https://www.unad.edu.co/
https://lab-remoto-etr.unad.edu.co/weblab/

WebLab-Deusto Documentation, Release 5.0

• UNIFESP: https://weblab.unifesp.br/weblab/

• UFH: https://weblab.ufh.ac.za/weblab/

• University of Michigan: https://weblab.eecs.umich.edu/weblab/

• University of Washington: https://weblab.ece.uw.edu/weblab/

• Université Abdelhamid Ibn Badis Mostaganem: https://weblabdeusto.leog.univ-mosta.dz/weblab/

• PSUT: https://weblab.psut.edu.jo/weblab/

If you wish us to host a new deployment, contact us at weblab@deusto.es.

1.5 Technical description

This section describes the internals of a single WebLab-Deusto deployment. However, the architecture is enriched
supporting federation. Go to the federation section for further information.

1.5.1 Architecture

Locally, WebLab-Deusto is based on the distributed architecture shown in following diagram:

In this architecture, clients connect to the core servers, using commonly HTTP with JSON. These servers manage
the authentication, authorization, user tracking, federation (sharing) and scheduling. From there, the system forwards
requests to the laboratory servers, which forward them to the final experiments. One exception are the unmanaged

26 Chapter 1. General

http://www.unifesp.br
https://weblab.unifesp.br/weblab/
https://www.ufh.ac.za
https://weblab.ufh.ac.za/weblab/
https://www.umich.edu
https://weblab.eecs.umich.edu/weblab/
https://www.uw.edu
https://weblab.ece.uw.edu/weblab/
http://www.univ-mosta.dz
https://weblabdeusto.leog.univ-mosta.dz/weblab/
https://www.psut.edu.jo
https://weblab.psut.edu.jo/weblab/
mailto:weblab@deusto.es

WebLab-Deusto Documentation, Release 5.0

laboratories (such as Remote Panels, Virtual Machines or so), where students directly connect to the final host directly
(and therefore user tracking is lost).

As detailed later, the communications however enable that all these servers are spread in different machines in a
network, or they can all be running on the same machine or even in the same process. For instance, the login server
and the core server are usually always in the same process, while the laboratory server may be in other computer and
the experiment server could be in the same process as the laboratory server. It just depends on the deployment desired
and the required latency.

1.5.2 Technologies

WebLab-Deusto is developed in Python and using Open Source technologies (MySQL or SQLite, Redis, etc.), but we
provide multiple APIs for developing laboratories in different languages. The user interface is developed in HTML,
but it supports labs in other legacy technologies.

The server uses an ORM called SQLAlchemy. In theory, WebLab-Deusto should be independent of the database
provider, but it has only been tested with MySQL and SQLite. For scheduling, WebLab-Deusto supports two types of
back-ends: SQL database (again, MySQL and SQLite) and Redis, which is much faster.

1.5.3 Communications

WebLab-Deusto communications have been built on top of a pluggable system of protocols. When a component tries
to connect to other server, it provides the WebLab-Deusto address of this server, and the communications broker will
check what possible protocols can be used and it will automatically choose the fastest one (e.g., if both components
are in the same process, it calls it directly instead of using any kind of serialization or communication).

1.6 Publications

The members of the WebLab-Deusto project are listed here. Some of them have their publications listed in certain
websites (e.g., Javier Garcia-Zubia, Pablo Orduña, Ignacio Angulo, Unai Hernandez or Luis Rodriguez-Gil).

1.7 Contact

For technical support or discussion, please use the weblabdeusto mailing list:

• https://groups.google.com/forum/?fromgroups#!forum/weblabdeusto

You may also contact the WebLab-Deusto developers at weblab@deusto.es

1.8 Professional services

For professional services (e.g., commercial support, consultancy services. . .), LabsLand is the spin-off of the WebLab-
Deusto project:

• http://labsland.com

1.6. Publications 27

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server
http://en.wikipedia.org/wiki/Object-relational_mapping
http://www.sqlalchemy.org/
http://www.mysql.com
http://www.sqlite.org/
http://redis.io/
http://weblab.deusto.es/website/members.html
https://scholar.google.es/citations?user=eXFjb9oAAAAJ
https://scholar.google.es/citations?user=1cAD0pgAAAAJ
http://www.researchgate.net/profile/Ignacio_Angulo
https://scholar.google.es/citations?user=PRHDFjIAAAAJ
https://scholar.google.es/citations?user=HhhikzgAAAAJ
https://groups.google.com/forum/?fromgroups#!forum/weblabdeusto
mailto:weblab@deusto.es
http://labsland.com
http://labsland.com

WebLab-Deusto Documentation, Release 5.0

28 Chapter 1. General

CHAPTER 2

Users

This section is intended for people who is going to install the WebLab-Deusto system.

2.1 Installation

Installing the core of WebLab-Deusto is pretty straightforward. It does not have many requirements. However, sup-
porting more features and tuning the performance requires installing more software infrastructure. This section covers
only the first steps.

Note: If you’re familiar with Python, git, setuptools and virtualenv, all you need to do (in a
virtualenv) is:

pip install git+https://github.com/weblabdeusto/weblabdeusto.git

And go to the next section. Please note that, given the size of the repository, it’s better if you keep the weblabdeusto
git repository downloaded in your computer so you can call git pull to upgrade faster.

Otherwise, please read this section.

Through this tutorial, we’ll go through the most simple deployment possible. It will not require any web server (such
as Apache), neither a database engine (such as MySQL). Instead it will use its internal web server and a simple sqlite
database. Then, we will explain how to go deep to more complex deployments.

Note: during the whole documentation, some examples of commands run in a terminal will be presented. Given that
terminals are different from system to system, we will show $ to represent the terminal prompt. For instance, the
following example:

$ weblab-admin --version
5.0

The $ will represent C:\something> in Windows environments and user@machine:directory$ in certain
UNIX (Linux, Mac OS X) environments. You must not write that. Whenever there is no $ in the beginning of the line

29

WebLab-Deusto Documentation, Release 5.0

(such as 5.0 in the example), is the expected output. Finally, sometimes the output is too long, so [...] is used to
declare “a long output will be shown”.

2.1.1 Obtaining WebLab-Deusto

There are two ways to obtain WebLab-Deusto:

1. Downloading it from github using git. That’s the recommended version, since that allows you to upgrade WebLab-Deusto automatically in the future, and even contribute easily. However, it requires installing git.

• This process is detailed in Download using git.

2. Downloading it from github using the web browser. That’s the simplest version, but we do not recommend it (since you lose useful information about the running version and the upgrade process is very complicated). If you still try to use it, go to the github repository and click on the ZIP link. Uncompress the file.

• Windows users: in certain versions of Microsoft Windows, sometimes there are problems with
too-long file paths, so if any problem is reported by your uncompressing program, just make
sure that the directory where you are uncompressing WebLab is not very long (for instance, un-
compressing it in C:\weblab or C:\Users\Tom\weblab will surely work, whereas down-
loading it in C:\Users\My full name\Downloads\Other downloads\Yet other
downloads\weblabdeusto-long-name might fail).

2.1.2 Installing the requirements

1. Install Python 2.7:

• In Linux and Mac OS X, Python is probably installed.

• In Microsoft Windows, download it from here. Do not download Python 3.x (WebLab-Deusto relies
on Python 2.7).

2. Once installed, put both in the system path:

• In Linux and Mac OS X, this is probably done by default.

• In Microsoft Windows, go to Control Panel -> System -> Advanced -> Environment variables ->
(down) PATH -> edit and append: ;C:\Python27\;C:\Python27\Scripts\;.

3. At this step, you should be able to open a terminal (in Microsoft Windows, click on the Start menu -> run ->
type cmd) and test that both tools are installed.

Run the following (don’t take into account the particular versions, these are just examples):

30 Chapter 2. Users

https://github.com/weblabdeusto/weblabdeusto
http://www.python.org/download/

WebLab-Deusto Documentation, Release 5.0

$ python --version

Python 2.7.6

Note: If it reports that it is using a higher version (e.g., 3.5.1), then your system is using by default Python 3 instead
of Python 2. At the time of this writing, WebLab-Deusto is incompatible with that version. If this is the case, try
running python2.7 to verify that it is installed:

$ python2.7 --version
Python 2.7.6
$

If it is installed (even if it is not by default), it is fine.

4. Install setuptools if you don’t have them. In Windows, nowadays the installer of Python comes with pip,
so you don’t need to install anything else. In Linux, you usually can install it from the repositories (e.g., sudo
apt-get install python-pip in Ubuntu/Debian). If in doubt, follow the instructions.

5. Install virtualenv and virtualenvwrapper. In Ubuntu/Debian you can use sudo apt-get
install virtualenv virtualenvwrapper (and in other Linux distributions this is probably avail-
able in the repositories). In Windows run the following:

C:\Users\Tom> pip install virtualenvwrapper-win

In other systems, you may use as an administrator:

$ pip install virtualenv virtualenvwrapper

6. At this point, you should be able to open a terminal and test that these tools are installed.

Run the following (don’t take into account the particular versions):

$ pip --version

pip 1.5.4 from /usr/lib/python2.7/dist-packages (python 2.7)

$ virtualenv --version

1.11.4

$ mkvirtualenv --version

1.11.4

Troubleshooting

virtualenv and virtualenvwrapper are not strictly necessary. If you don’t use them, you can always install WebLab-
Deusto at system level (using administrator credentials. So if you get problems that you can not solve when installing
virtualenv, do not worry and skip that step.

That said, there are some common problems installing virtualenvwrapper, listed here:

• mkvirtualenv: command not found: virtualenvwrapper is a bash script, which must be loaded. By default in
Ubuntu, it is correctly loaded in all the new terminals, so try closing the current terminal and opening it again.

2.1. Installation 31

https://pypi.python.org/pypi/setuptools#installation-instructions

WebLab-Deusto Documentation, Release 5.0

If the problem persists, you may need to find where is a script called virtualenvwrapper.sh, and add to
your ~/.bashrc:

source /path/to/virtualenvwrapper.sh

• Problems in Microsoft Windows Windows with path not found: Check that you have installed
virtualenvwrapper-win and not virtualenvwrapper.

If you still have problems with mkvirtualenv, try uninstalling it (pip uninstall virtualenvwrapper)
and installing only the virtualenv package. If you do this, you will need to do:

$ virtualenv weblab_env
New python executable in weblab_env/bin/python
Installing distribute....................done.
Installing pip...............done.
$

Note: Make sure that the virtualenv is in a directory with no spaces. For example, if you have it in a directory such
as /Users/Tom/Google Drive/ or C:\Users\Tom\Desktop\My folder, there can be problems with
different dependencies of Python. It is safer if you use /Users/user/projects.

Note: If by default your system is using Python 3, then make sure you provide the following parameter:

$ virtualenv --python=/usr/bin/python2.7 weblab_env

And then, each time you want to workin the virtualenv, run:

(On UNIX)
$. ./weblab_env/bin/activate
(weblab_env) user@machine:~$

(On Windows)
C:\> .\weblab_env\Scripts\activate
(weblab_env) C:\>

If this also generates problems, you can safely avoid using a virtual environment and install the whole system as
administrator:

C:\weblab\> python setup.py install

2.1.3 Installing WebLab-Deusto

Create a virtualenv. In Linux/Mac OS X systems:

user@machine:/opt/weblabdeusto$ cd WHEREVER-IS-WEBLAB

(e.g., /opt/weblabdeusto/ Avoid directories with spaces -e.g., /Users/Tom/Google
→˓Drive/-)

user@machine:/opt/weblabdeusto$ mkvirtualenv weblab

(weblab) user@machine:/opt/weblabdeusto$

32 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

Note: If by default your system is using Python 3, then make sure you provide the following parameter:

$ mkvirtualenv --python=/usr/bin/python2.7 weblab

In Microsoft Windows environments:

C:\> cd WHEREVER-IS-WEBLAB

(e.g., C:\weblabdeusto\ Avoid directories with spaces -e.g., C:\Users\Tom\My
→˓Projects\-)

C:\weblabdeusto> mkvirtualenv weblab

(weblab) C:\weblabdeusto>

Then, make sure you’re running the latest versions of setuptools and pip:

(weblab) $ pip install --upgrade setuptools
(weblab) $ pip install --upgrade pip

And then, install WebLab-Deusto:

$ python setup.py install
[...]
Finished processing dependencies for weblabdeusto==5.0

Once the process is over, you can test the installation by running:

$ weblab-admin --version
5.0 - 1ac2e2b03048cf89c8df36c838130212f4ac63d3 (Sunday, October 18, 2015)

If it displays 5.0 or higher, then you have successfully installed the system in that virtual environment. Virtual environ-
ments in Python are environments where a set of libraries (with particular versions) are installed. For instance, you may
have different virtual environments for different applications relying on different versions of libraries. The long code
(i.e., 1ac2e2. . .) refers to the currently installed version, and then the date of the latest change in the WebLab-Deusto
repository. You should upgrade the system from time to time to obtain the latest features.

Whenever you open a new terminal, you’ll find that weblab-admin is not installed. However, whenever you activate
the environment where you installed WebLab-Deusto, it will be installed. For instance, if you open a new terminal, do
the following in UNIX (Linux, Mac OS X) systems:

user@machine:~$ workon weblab
(weblab) user@machine:~$ weblab-admin --version
5.0 - 1ac2e2b03048cf89c8df36c838130212f4ac63d3 (Sunday, October 18, 2015)

Or the following in Microsoft Windows systems:

C:\Users\John\Desktop> workon weblab
(weblab) C:\Users\John\Desktop> weblab-admin --version
5.0 - 1ac2e2b03048cf89c8df36c838130212f4ac63d3 (Sunday, October 18, 2015)

Now you can continue with the first steps.

2.1. Installation 33

WebLab-Deusto Documentation, Release 5.0

2.2 First steps

In this section, we will learn to create our first deployment of a WebLab-Deusto instance. This section assumes that
you have successfully installed the system. It also assumes that you have activated the proper virtual environment in
the current terminal, so running weblab-admin works:

$ weblab-admin --version
5.0

The deployment we are running here is very small and relies of very few technologies. It has successfully been
deployed even in Raspberry Pi devices. But it also has several drawbacks: performance, lack of concurrent support for
certain operations, etc. We will see how to implement more complex scenarios in other section, but for bootstrapping
a WebLab-Deusto instance and learning the basic concepts, this is enough.

2.2.1 Creating a WebLab-Deusto instance

A single computer may have multiple instances of WebLab-Deusto. In production, there will be typically a single one,
but for testing it may be useful to play with different ones. Each instance will manage its own permissions, its own
users, its own queues, etc.

So as to create a new WebLab-Deusto instance, run the following:

$ weblab-admin create example --http-server-port=8000
Congratulations!
WebLab-Deusto system created
[...]
Enjoy!

$

From this point, in that directory (example), a full WebLab-Deusto deployment will be established. If you take a look
inside, you will see different directories (for databases -db-, web servers -httpd-, logs -logs, files_stored-), and there
will be one which contains all the deployment configuration, called core_machine. Inside it, you will see a hierarchy
of directories with configuration files that apply to each server.

2.2.2 Starting the WebLab-Deusto instance

The WebLab-Deusto instance at this point is configured, but it is not started. So as to start it, we will use once again
the weblab-admin command. As you’ll find out, this is the command that you will use for any management related
with the instances. Run the following:

$ weblab-admin start example
Press <enter> or send a sigterm or a sigint to finish

As you can see, the server is running. By pressing enter, the server will stop:

(enter)
Stopping servers...
$

So, let’s start it again:

$ weblab-admin start example
Press <enter> or send a sigterm or a sigint to finish

34 Chapter 2. Users

http://www.raspberrypi.org/

WebLab-Deusto Documentation, Release 5.0

And, while it is started, let’s use it for the very first time. Open in your web browser the following address: http:
//localhost:8000/

You will find the log in screen of WebLab-Deusto. On it, log in using admin as username and password as password.
You will see that there are some sample laboratories. One of them (dummy) is local, and it does not rely on any
hardware equipment. The rest are demo laboratories located in the University of Deusto. By default, these laboratories
are created and assigned to the administrators group. They use the federation model of WebLab-Deusto to connect to
WebLab-Deusto and use real equipment there.

You can safely play with both types of laboratories. With the dummy laboratory, you will see several output lines in
the terminal from which you run WebLab-Deusto.

2.2.3 Managing users and permissions

Ok, so everything is working for the admin user. What about creating a class of 20 students who can access only the
dummy, and other class who can access the federated laboratories?

Using the admin user, you’ll see the settings button in the top-right corner. Click on it:

And you will see this:

Once in the administration panel, several operations are available. The number of operations is increasing from month
to month, so upgrading the system is highly advisable.

2.2. First steps 35

http://localhost:8000/
http://localhost:8000/

WebLab-Deusto Documentation, Release 5.0

The first thing to do is adding a new user. So as to do this, click on “General” and then on “Users”. There you can see
the list of users registered in the system. Then, click on “Create” and fill the following fields:

The role “student” is the common one. If you select “administrator”, that user will be able to use the administration
panel (and therefore, add or delete other users, experiments, etc.).

Once we have added a user, let’s create a new group called “Physics”. Click on “General” and then on “Groups”.
Inside this group, you can click on “Create” and fill the following fields:

The “Users” field contains all the users in the system. So you can add them directly here, or in the “Groups” field
when editing a user.

36 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

The next step is to grant permission on a laboratory to this user (or this group). To do this, click on “Permissions”,
and then on “Create”. Here you can select what permission to grant (“experiment_allowed” in this case) and to who
(a group, a user, or a role).

And then you can select the experiment you want to let the user access, for how long (in seconds), what priority he
may have (the lower, the faster they advance in the queue), and to which group you are granting this permission.

2.2. First steps 37

WebLab-Deusto Documentation, Release 5.0

Once this is done, this user (and all the users in that group) can access that laboratory.

Given that adding multiple users one by one might be useful, it is possible to add multiple users at a time. Click on
“General”, then on “Add multiple users”.

38 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

Click on the “Add users” in the row of “Database”. You will be able to add multiple users by writing them in multiple
rows separated by commas, using the pattern described. You may even add them to an existing group, or to a new one:

2.2. First steps 39

WebLab-Deusto Documentation, Release 5.0

For instance, if you add them to the Physics groups, they will inherit the permissions granted to this group.

2.2.4 Inviting users to register or to join a group

In some cases, you will want to explicitly manage your users, creating their accounts yourself and placing them into
specific groups. However, often you will want to give your users the chance to register themselves, or to join a specific
group (to get access to certain labs) on their own.

This is useful, for instance:

• When you don’t want to specify the login, name and e-mail for every user.

• When you want a broad group of people to join, without knowing exactly who belong to that group.

• When you want to publicly invite people to join.

To use the invitations system, you can follow the following steps:

1. First, you will need to create a WebLab group for your invitees to join (unless you have that group already). All
invitations are linked to a group, which they automatically join after accepting the invitation. That way, they
will automatically get access to the experiments you intend, thanks to that group’s privileges.

2. Now, you will need to create the Invitation itself. This can be done through the WebLab administrator. Go to
the administrator, then to the “Users” menu, then click on “Invitations”. To create the invitation you will need
to specify the group to join, the expire date, the max number of people who can accept it, and whether the

40 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

invitation can be used to register new users. If that last option is disabled, then only existing WebLab-Deusto
users will be able to use the invitation to join a group. Users without an account won’t be able to create one.

3. Once you have created the invitation, in the list of invitations you will see the URL of each one. Now all that is
left is to share the Invitation URL with your prospective students. Depending on the invitation, they will be able
to use it to register a new account altogether, or to join the invitation’s group with their existing account.

2.2.5 Tracking users

Now you can start again the WebLab-Deusto instance, and you can use the laboratory with different users. Once you
log in the Administration panel, go to “Logs” and you will see who has accessed when:

By using the “Add filter”, you may search by user, date, or similar.

2.2.6 Customizing the deployment

In this section, we have presented a very simple deployment. However, this deployment can be configured. While in
the next section, we’ll learn to configure redis, MySQL or Apache, there are some settings that we can modify at this
level.

Running:

$ weblab-admin create --help

Displays the full help regarding the create command. A more advanced example would be:

$ weblab-admin create other.example --http-server-port=8001 --start-port=20000 \
--system-identifier='My example' --entity-link='http://www.myuniversity.edu/' \
--poll-time=300 --admin-user=administrator --admin-name='John Doe' \
--admin-password=secret --admin-mail='admin@weblab.myuniversity.edu' --logic

This example will be run in other port (8001), so you can start it at the same time as the other deployment without
problems. Just go to http://localhost:8001/ instead, log in with user administrator and password secret, and see how
there is another laboratory called logic. Many of the fields can always be changed with the administration panel. For
example, in System and then Settings you can add a demo account, change the URL and logo of the school or provide
a Google Analytics code.

2.2. First steps 41

http://redis.io/
http://www.mysql.com/
http://httpd.apache.org/
http://localhost:8001/

WebLab-Deusto Documentation, Release 5.0

2.2.7 Moving the deployment to a different directory or reinstalling WebLab-Deusto

Say you have installed WebLab-Deusto in a location and you need to move to a different directory. All the web server
configuration files will be pointing with absolute paths to the old directory. The easiest way to override the existing
HTTPd configuration and make it point to the proper paths is running:

$ weblab-admin httpd-config-generate sample
Generating HTTPd configuration files... [done]
$

After running this, restarting it and restarting the web server should be enough.

Other examples, such as using Virtual Machines, VISIR, etc., are documented in the next section.

2.2.8 Join the community

Once you have installed WebLab-Deusto (or if you have any trouble installing it), please join our small community:

• https://groups.google.com/forum/?fromgroups#!forum/weblabdeusto

So we can all exchange experiences, tips, tricks or concerns on how to create, maintain and share better remote
laboratories. If you don’t like writing in public, feel free to contact us privately at any point at weblab@deusto.es But
exchanging the experience in public can be benefitial for all the members.

42 Chapter 2. Users

https://groups.google.com/forum/?fromgroups#!forum/weblabdeusto
mailto:weblab@deusto.es

WebLab-Deusto Documentation, Release 5.0

2.3 Installation: further steps

Table of Contents

• Installation: further steps

– Introduction

– Installing external systems

* GNU/Linux

* Microsoft Windows

* Mac OS X

– Installing native libraries

– Scheduling

– Database

– Secure the deployment

* Secure the communications

* Close access to local services

* Upgrade your software frequently

– Deployment

* Step 1: installation of supervisor

* Step 2: prepare WebLab for being used as a service

* Step 3: Create the configuration for supervisor

* Step 4: Add the configuration to supervisor

* Step 5: Try supervisor

– Summary

2.3.1 Introduction

As previously detailed, right now you should have the simplest WebLab-Deusto up and running. It uses SQLite
as main database (so only one process can be running) and SQLite as scheduling mechanism (which is very slow).
Additionally, you have all the servers in a single process, so you can not spread the system in different machines.
Finally, you are not using a real HTTP server, but the one built-in, which is very slow and not designed for being used
in production. These settings in general are highly not recommended for a production environment.

In this section we will focus on installing and validating the installation of more components, as well as playing with
simple deployments which use these installations. With these components, it is possible to enhance the performance
in the next section: Performance.

2.3.2 Installing external systems

At this point, you have installed the basic requirements. However, now you should install three new external compo-
nents:

2.3. Installation: further steps 43

WebLab-Deusto Documentation, Release 5.0

• Apache HTTP server: By default, WebLab-Deusto uses a built-in, simple HTTP server written in Python.
This web server is not aimed to be used in production, but only for demonstration purposes. For this reason, the
Apache web server (or any other supporting proxies) is recommended.

• MySQL: By default, WebLab-Deusto uses SQLite. This configuration suits very well low-cost environments
(such as Raspberry Pi, where it works). However, in desktop computers or servers, this restricts the number
of processes running the Core Server to one, since SQLite can not be accessed concurrently. Even more, it
restricts the number of threads to one, so it becomes a bottle neck. For few students, this might be fine, but as
the number of students increase, this becomes an important problem. For this reason, it is better to use other
database engine. The one used in the University of Deusto for production is MySQL.

• Redis: There are two main backends for scheduling: one based on SQL (and therefore, it can use MySQL
or SQLite), and other based on Redis (a NoSQL solution that keeps information in memory, becoming very
fast). Even in low cost devices, the latter is recommended. However, it is only officially supported for UNIX.
Therefore, if you are running Mac OS X or Linux, install Redis and use it as scheduling backend to decrease the
time required to process users.

GNU/Linux

All these components are open source and very popular, so they are in most of the package repositories of each
distribution. For example, in Ubuntu GNU/Linux, you only need to install the following:

sudo apt-get install apache2 mysql-server redis-server

If you are not using PHP, it is highly recommended to install the worker MPM by running:

sudo apt-get install apache2-mpm-worker

Note: For apache on Ubuntu (>16.04) apache2-mpm-worker is included by default.

This makes that Apache uses threads rather than processes when attending a new request. This way, the amount of
memory required with a high number of concurrent students is low. However, it is is usually not recommended when
also using PHP, so whenever you install PHP this MPM is usually removed. If you need to run both, you can use the
prefork MPM, while take into account that it will require more memory. This is explained in detail in the official
site.

Regarding redis, take into account that redis performs all the operations in memory but from time to time it stores
everything in disk, adding latency. It is recommended to avoid this. In the /etc/redis/redis.conf file, com-
ment the following lines:

save 900 1
save 300 10
save 60 10000

By adding a # before.

Microsoft Windows

In Microsoft Windows, you can install both the Apache HTTP server and MySQL by using XAMPP. Download it and
install it. XAMPP comes with a control panel to start and stop each service. In WebLab-Deusto, we are only interested
in Apache and MySQL.

Once installed, it is recommended to have the MySQL client in console, so either do this:

44 Chapter 2. Users

http://httpd.apache.org/docs/2.2/en/mpm.html
http://httpd.apache.org/docs/2.2/en/mpm.html
http://www.apachefriends.org/en/xampp-windows.html

WebLab-Deusto Documentation, Release 5.0

set PATH=%PATH%;C:\xampp\mysql\bin

Or go to the Microsoft Windows Control Panel -> System -> Advanced -> Environment variables -> (down) PATH ->
edit and append: ;C:\xampp\mysql\bin.

If you have problems with XAMPP, check their FAQ.

Regarding Redis, there is an unofficial version of Redis for Microsoft Windows, with a patch developed by Microsoft.
However, while the support is not official or there is an officially supported side project for supporting Microsoft
Windows, we are not recommending its use. So if you are running Microsoft Windows, simply skip those sections and
use MySQL for scheduling.

Mac OS X

In Mac OS X, Apache is usually installed by default. However, you must install MySQL by using the official page.
You can install Redis by downloading it and compiling it directly. If you do not manage to run it, remember that it is
an optional requirement and that you can use MySQL as scheduling backend.

2.3.3 Installing native libraries

By default, the installation process installed a set of requirements, which are all pure Python. However, certain native
libraries make the system work more efficiently. That said, these libraries require a C compiler to be installed and a set
of external C libraries, which might not be available in Microsoft Windows environments. However, in GNU/Linux,
they are recommended.

For this reason, in Ubuntu GNU/Linux install the following packages:

Python
$ sudo apt-get install build-essential python-dev
MySQL client, for an optimized version of the MySQL plug-in
$ sudo apt-get install libmysqlclient-dev
LDAP
$ sudo apt-get install libldap2-dev
SASL, SSL for supporting LDAP
$ sudo apt-get install libsasl2-dev libsasl2-dev libssl-dev
XML libraries for validating the configuration files
$ sudo apt-get install libxml2-dev libxslt1-dev
Avoid problems with freetype:
$ sudo ln -s /usr/include/freetype2 /usr/include/freetype

Once installed, it is now possible to install more optimized Python libraries, by running:

$ cd weblab/server/src/
$ pip install -r requirements_suggested.txt

From this moment, libraries that improve the performance will be installed.

2.3.4 Scheduling

There are two main database backends for scheduling:

• SQL based: using the SQLAlchemy framework. Two database engines are supported:

– Using SQLite, which is fast but it requires a single process to be executed, so multiple users are managed
in a single thread and the latency increases.

2.3. Installation: further steps 45

http://www.apachefriends.org/en/faq-xampp-windows.html
http://redis.io/download
http://www.mysql.com/
http://redis.io/download
http://www.sqlalchemy.org/

WebLab-Deusto Documentation, Release 5.0

– Using MySQL, which supports multiple students accessing to different servers, distributed in several pro-
cesses or even machines.

• Redis: which uses redis, and provides faster results but does only work on UNIX environments at this point.

By default in the introduction section, you have used SQLite. So as to use MySQL as database engine, run the
following:

$ weblab-admin create sample --coordination-db-engine=mysql

Additionally, you may pass other arguments to customize the deployment:

$ weblab-admin create sample --coordination-db-engine=mysql \
--coordination-db-name=WebLabScheduling \
--coordination-db-user=weblab --coordination-db-passwd=mypassword \
--coordination-db-host=localhost --coordination-db-port=3306

However, if you want to use Redis, run the following:

$ weblab-admin create sample --coordination-engine=redis

Additionally, you may pass the other arguments, such as:

$ weblab-admin create sample --coordination-engine=redis \
--coordination-redis-db=4 --coordination-redis-passwd=mypassword \
--coordination-redis-port=6379

So as to change an existing deployment, you may check the variables explained at Configuration variables, which are
located at a file called machine_config.py in the core_machine directory.

2.3.5 Database

The WebLab-Deusto database uses SQLAlchemy, which is a ORM for Python which supports several types of database
engines. However, in WebLab-Deusto we have only tested two database engines:

• SQLite: it is fast and comes by default with Python. It suits very well low cost environments (such as
Raspberry Pi).

• MySQL: on desktops and servers, it makes more sense to use MySQL and a higher number of processes to
distribute the load of users among them.

So as to test this, run the following:

$ weblab-admin create sample --db-engine=mysql

Additionally, you may customize the deployment with the following arguments:

$ weblab-admin create sample --db-engine=mysql \
--db-name=MyWebLab --db-host=localhost \
--db-port=3306 --db-user=weblab \
--db-passwd=mypassword

Note: It may happen that you get an error of authentication when doing this, because in modern Linux servers
MySQL does not have by default a username and password for root. If this is the case, run the following:

46 Chapter 2. Users

http://www.redis.io
http://www.sqlalchemy.org/

WebLab-Deusto Documentation, Release 5.0

$ sudo mysql -uroot
mysql> ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY
→˓'password';
mysql> exit
$

Then, you will be able to follow the installation if when prompted for a root administrator you provide root and for the
password you put whatever you put as ‘password’.

You may also change the related variables explained at Configuration variables, which are located at a file called
machine_config.py in the core_machine directory.

2.3.6 Secure the deployment

This section covers few minimum steps to secure your WebLab-Deusto deployment.

Secure the communications

WebLab-Deusto supports HTTPS, and it is designed so that it can easily work with it (e.g., in the managed approach,
all the connections go through the core server). We highly recommend you to install SSL certificates to reduce the
risk of potential attacks to your WebLab-Deusto deployment, especially if you or your students submit the credentials
through WebLab-Deusto (as it happens when using database passwords or LDAP).

Note: A note about SSL

In case you are unfamiliar with HTTPS (HTTP Secure or HTTP over SSL), all the web uses the HTTP protocol
(http://). However, this protocol goes unencrypted, so anyone in the middle (people in the same WiFi, ISPs, layers
in the middle between the final client and the server. . .) can read the traffic. For this reason, HTTPS (https://) was
developed, which supports HTTP through an SSL connection, which encrypts the communications. Nowadays there is
a big effort to make as much of the web use HTTPS (e.g., not only e-commerce sites but also google.com, Wikipedia,
Facebook and even this website where you are reading this. . . all go through HTTPS).

You can generate SSL certificates by yourself (and signed by yourself). However, in general web browsers will not
accept them (or they will show a big warning before accessing), because otherwise you could create an SSL certificate
for another website that you do not own, and they would not be able to know. This could lead to different types of
attacks.

For this reason, web browsers come with a set of CA (Certificate Authorities), and they only trust whatever is signed
by them (or signed by whoever they delegate). Additionally, they have other complex mechanisms (such as lists of
revoked certificates, etc.).

So, when you install a valid certificate, some CA (or delegated) will verify that you are the valid owner of a server, and
it will create and sign a certificate for you. When users access your website using https:// to your host, when starting
the connection they will automatically download the public key (which they will use for encrypting) and the signature
of this key provided by a CA. They will validate with the installed CA if this key is valid for this particular domain (e.g.,
weblab.yourinstitution.edu, and if it is, it will proceed to encrypt the connection). Otherwise (e.g., the key
is expired, the CA does not recognize the signature, the server name is different -www.weblab.yourinstitution.edu
instead of weblab.yourinstitution.edu-, the key is in a revocation list), it will show an error instead.

As a final note, one certificate can server multiple domain names for a particular server. For example, you might
have a certificate for *.weblab.yourinstitution.edu and you can use it in different servers (e.g., cams.
weblab.yourinstitution.edu, www.weblab.yourinstiution.edu. . .). Those are called wildcard
certificates (and if you choose to request those, take into account that *.weblab.yourinstitution.edu is
not valid for weblab.yourinstitution.edu so in addition you’ll need an alternate name). You may also

2.3. Installation: further steps 47

WebLab-Deusto Documentation, Release 5.0

select different names, listed in what is called the Alternate names (manually providing a list, such as weblab.
yourinstitution.edu and www.weblab.yourinstitution.edu and cams.yourinstitution.
edu, etc.).

So, once you have installed WebLab-Deusto in your final server (i.e., with a proper hostname such as weblab.
yourinstitution.edu), you might want to install the SSL certificates. To do so, there are three approaches:

• Contact your IT services: many institutions (e.g., universities, research centers) already have agree-
ments to create free SSL certificates. You should first contact to your IT services to see if they provide you this
service.

• Buy a SSL certificate: there are many websites where SSL certificates are sold and managed, with
different options of security.

• Get a free SSL certificate by Let's Encrypt: Let’s Encrypt is an open initiative to secure
the Internet that provides free SSL certificates in an automatic basis. The certificates only last a couple of
months, but you can renew them automatically. All what you need is having your server already configured with
the final IP address and hostname (so they automatically verify that weblab.yourinstitution.edu is
indeed your server), and running already a proper web server (e.g., Apache or nginx). For more information on
how to do it (it literally takes a couple of minutes), go to the Certbot site created by the EFF (Electronic Frontier
Foundation). It tells you what software to install and how. Let's Encrypt does not support wildcard
certificates, but it supports as many alternate names as you want.

Once you install the certificate in your Apache server (each provider will explain you how), you should go to the
core_host_config.py file and change the core_server_url variable to your final URL (e.g., https://
weblab.yourinstitution.edu/weblab/).

Additionally, in Apache there is a directive that you might want to use in the VirtualHost using the 80 port such
as:

RedirectMatch ^/weblab/(.*)$ https://weblab.yourinstitution.edu/weblab/$1

So that everything that arrives to the 80 port (http://) is forwarded to the 443 port (https://).

Close access to local services

The internet is a quite dangerous place, where there are robots constantly checking random IPs and searching for open
services to attack (such as databases, shared directories, cameras, printers. . .). In your WebLab-Deusto server, you
probably don’t want anything open other than the WebLab-Deusto server (and other services that you in purpose want
open). There are two ways to do this, and we recommend both:

• First, install a proper firewall. You might use the one provided by your Operating System (such as the Windows
Firewall in Microsoft Windows, or iptables in Linux). Make it possible to access only those services that you
need open. WebLab-Deusto itself does not require any port open (only those for the web browser, which are 80
and 443).

• Second, review your services. In particular, make sure that both Redis and MySQL are bound to 127.0.0.1
(instead of open to the whole Internet). This is usually established in its configuration files (e.g., search for a
parameter called bind-address in MySQL or bind in redis. It may be called listen in other services).

After doing it, or in case of doubt, check from outside (e.g., your home) connecting to those ports:

(3306 is the default MySQL port)
$ telnet weblab.myinstitution.edu 3306
Trying 1.2.3.4...
telnet: Unable to connect to remote host: Connection timed out
$

(continues on next page)

48 Chapter 2. Users

https://letsencrypt.org/
https://certbot.eff.org/
https://www.eff.org/
https://www.eff.org/

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

(6379 is the default Redis port)
$ telnet weblab.myinstitution.edu 6379
Trying 1.2.3.4...
telnet: Unable to connect to remote host: Connection timed out
$

If the response is something like:

telnet: Unable to connect to remote host: Connection refused

it’s also fine. However, if it ever says:

$ telnet weblab.myinstitution.edu
Trying 1.2.3.4...
Connected to weblab.myinstitution.edu.
Escape character is '^]'.

It means that those ports are open and can be accessed by attackers. By default, some services (as MySQL) require
credentials, but sometimes there is a vulnerability in the software and external attackers can access more than they
should. Also, if you are using easy passwords (e.g., the ones in the documentation), the risk of attack increases if the
services are open to the Internet.

For those services that you also want to make available but only for you (and not for the general audience), you should
also change the default ports. For example, if you use Remote Desktop, VNC or SSH, you can use it in a different
port than the default one. For example, SSH is a secure service, but it has had important vulnerability problems in the
past. And for those robots that are constantly checking for services open, they might be looking in each IP address for
a SSH service running in the 22 port (the default one). If you have it in the 16483 one, it might be more difficult for
them to find it and attack it, unless they’re indeed targeting your server. As an additional measure, there are approaches
such as port-knocking which let you define a set of random ports (e.g., 5356, 15243 and 9513), and when you knock
them (e.g., trying to connect to them) in that order, suddenly the firewall opens access to these services (e.g., SSH).
This way, even if someone checks all the ports open in your server, they will only find the public ones (e.g., Apache),
and only if they connect to different ports in an order they will see that service available.

Upgrade your software frequently

All software is inherently subject to have vulnerabilities. Once they are discovered and fixed, when you upgrade them,
the vulnerabilities are not there anymore. However, if you upgrade once a month, then you might run into troubles for
that month.

This does not mean that you need to use the latest version of the software, just those which are maintained. For
example in the case of Ubuntu, you do not need to install the latest Ubuntu distribution. If you are using a Ubuntu
Server 12.04 LTS, it will be supported until June 2017. You are of course encouraged to use Ubuntu 16.04 LTS (the
latest LTS), but it is not really a priority. What is important is to use an Operating System version that is still supported
(and for this reason, in the case of Ubuntu, it is better to install LTS versions -that are supported for longer: e.g., 14.04,
16.04- than not LTS versions -e.g., 16.10-) and upgrade it every day (you can install a script for that). If you are using
software not managed by your operating system (e.g., Apache on Windows), you should also upgrade it frequently
(and you can join for example their mailing lists to be notified of new versions). This is not required in systems as
Linux, where most of the software required by WebLab-Deusto is installed from the repositories. However, you still
have to make sure that it is upgraded frequently.

It is also important to upgrade the WebLab-Deusto regularly (not so often as every day, but keep it in mind). It’s not
only about WebLab-Deusto itself, but about the libraries used by WebLab-Deusto (which are automatically upgraded
when you upgrade WebLab-Deusto). Usually in the main screen of WebLab-Deusto you have a link to GitHub (where
it says version r<number>). If you click that link and compare it with this one, you can see if there were new

2.3. Installation: further steps 49

https://en.wikipedia.org/wiki/Port_knocking
http://httpd.apache.org/lists.html#http-announce
https://github.com/weblabdeusto/weblabdeusto/commits/master

WebLab-Deusto Documentation, Release 5.0

versions since you last upgraded it. You may also use the WebLab-Deusto mailing list to receive notifications on
potential issues.

2.3.7 Deployment

Note: This section is only for deployments in UNIX environments. In Windows environments you can use services
by wrapping WebLab into .bat files.

WebLab-Deusto can be run as a script, but you might want to deploy it as a service. However, given that it is very
recommendable not to install it as root (unless you play with virtuaelnvs to avoid corrupting the system with wrong
versions of the libraries), it is better to install it in a system such as supervisor. In supervisor you can add any type of
program and they will run as services. You also have a tool to control which services are started, or restart them when
required (e.g., when upgrading or modifying the .py or .yml files).

This section is focused on how to install this tool in a UNIX (e.g., Linux) environment.

Step 1: installation of supervisor

Depending on your Operating System, you might find it in the OS packages itself. For example, in Ubuntu run:

$ sudo apt-get install supervisor

And you’re done. Otherwise go to supervisor docs on installation for futher information.

Once installed, you’ll see that you can start supervisor and check the status:

$ sudo service supervisor start
$ sudo supervisorctl help

default commands (type help <topic>):
=====================================
add exit open reload restart start tail
avail fg pid remove shutdown status update
clear maintail quit reread signal stop version

$ sudo supervisorctl status
$

It is normal that status returns nothing since we have not installed any service yet.

Step 2: prepare WebLab for being used as a service

Let’s imagine that you have installed WebLab-Deusto using virtualenvwrapper and called it weblab. Then,
the virtualenv will typically be located in something like:

/home/tom/.virtualenvs/weblab/

And the activation script will be in:

/home/tom/.virtualenvs/weblab/bin/activate

And let’s imagine that you have created a new WebLab-Deusto instance in your home directory, in a deployments
directory and called it example, such as:

50 Chapter 2. Users

http://supervisord.org/
http://supervisord.org/installing.html

WebLab-Deusto Documentation, Release 5.0

$ cd /home/tom/deployments/
$ weblab-admin create example --http-server-port=12345

Then, we will create a wrapper file in any folder (e.g., in the deployments) directory called for example
weblab-wrapper.sh which will contain the following three lines:

#!/bin/bash
_term() {

kill -TERM "$child" 2>/dev/null
}

When SIGTERM is sent, send it to weblab-admin
trap _term SIGTERM

source /home/tom/.virtualenvs/weblab/bin/activate
weblab-admin $@ &

child=$!
wait "$child"

And then we will grant execution privileges to that file:

$ chmod +x /home/tom/deployments/weblab-wrapper.sh

From this point, calling it from anywhere will use the virtualenv will work:

$ cd /tmp/
$ /home/tom/deployments/weblab-wrapper.sh
Usage: /home/tom/.virtualenvs/weblab/bin/weblab-admin option DIR [option arguments]

create Create a new weblab instance
start Start an existing weblab instance
stop Stop an existing weblab instance
monitor Monitor the current use of a weblab
instance
upgrade Upgrade the current setting
locations Manage the locations
database
httpd-config-generate Generate the HTTPd
config files (apache, simple, etc.)

$

Step 3: Create the configuration for supervisor

Now what you have to do is to create a file such as example.conf (it is important that it ends by .conf) for
running the example instance as a service. To do so, create a file such as the following:

[program:example]
command=/home/tom/deployments/weblab-wrapper.sh start example
directory=/home/tom/deployments/
user=tom
stdout_logfile=/home/tom/deployments/example/logs/stdout.log
stderr_logfile=/home/tom/deployments/example/logs/stderr.log
killasgroup=true

2.3. Installation: further steps 51

WebLab-Deusto Documentation, Release 5.0

There are plenty more of configuration variables in supervisor (such as not exceeding the stdout/stderr logs in more
than a number of MB, moving them until you have more than 10 files, etc.): check the documentation at the supervisor
[program:x] section documentation.

Step 4: Add the configuration to supervisor

Then, you have to add this file to supervisor. In Ubuntu Linux this is typically done by copying the file to /etc/
supervisor/conf.d/ and then using the supervisorctl to add it:

$ sudo cp example.conf /etc/supervisor/conf.d/
$ sudo supervisorctl update
example: added process group
$

At this point, you might check that your WebLab-Deusto instance is running. By default when you update the super-
visorctl, it runs the process. First check in:

$ sudo supervisorctl status
example RUNNING pid 12428, uptime 0:00:04
$

And then go with your web browser to see if it is running (in the example created, you can go to http://
localhost:12345/, but you should be using Apache as described above).

Step 5: Try supervisor

Once configured, it becomes easier to start the cycle of the deployment. For example:

$ sudo supervisorctl start example
example: started
$ sudo supervisorctl status example
example RUNNING pid 19320, uptime 0:00:18
$ sudo supervisorctl stop example
example: stopped

If you have more than WebLab-Deusto deployment, you can always do the following to start them all:

$ sudo supervisorctl start all
example1: started
example2: started
$ sudo supervisorctl stop all
example1: stopped
example2: stopped
$

If you have to make any change on the example.conf, remember to run:

$ sudo supervisorctl update

So supervisor checks the settings again.

Note: Make sure that supervisor starts itself when you reboot your computer (so try rebooting). In some systems by
default it doesn’t. In Ubuntu 16.04, for example, you have to run the following command:

52 Chapter 2. Users

http://supervisord.org/configuration.html#program-x-section-values
http://supervisord.org/configuration.html#program-x-section-values

WebLab-Deusto Documentation, Release 5.0

$ sudo systemctl enable supervisor

You might know that supervisor is active because otherwise any command will fail with a message such as:

$ sudo supervisorctl status
unix:///var/run/supervisor.sock no such file
$

Note: If you want to use this for testing environments, and you don’t need them to start every time (e.g., only when
you want them to start), you just have to detail that in the example.conf file by appending:

autostart=false

2.3.8 Summary

With these components installed and validated, now it is possible to enhance the performance in the next section:
Performance.

2.4 Performance

Table of Contents

• Performance

– Introduction

– Core servers

– Scheduling backends

– Apache

– Raspberry Pi and low cost devices

– Summary

2.4.1 Introduction

This section focuses on explaining how to increase the performance of the system by customizing it with the proper
arguments. You may use the WebLab Bot (WebLab Bot) to see what parameters work best in your environment.

2.4.2 Core servers

Python has a Global Interpreter Lock (GIL) that makes the threading model not work as could be expected when
coming from other programming languages. Internally in Python, when a thread is being run, it executes a number
of instructions which can be configured and then it swaps the context and other thread is executed. Whenever there
is an IO (input/output) operation, or some extension developed in C is called, the context will also be swapped. The

2.4. Performance 53

http://en.wikipedia.org/wiki/Global_Interpreter_Lock

WebLab-Deusto Documentation, Release 5.0

problem is that during the execution of the pure Python not-IO operations, the GIL is locked, so no other operation
can be executed in other processor.

Given the amount of IO in WebLab-Deusto (IO includes not only the requests from the client and the requests to the
particular laboratory, but also the database and all the access to the Redis server), certain concurrence will often occur
even with a single process. However, in order to take advantage of the nowadays common dual, quad or more core
processors, it can be managed using multiple copies of Python processes instead of relying on the Python threading
model.

For this reason, WebLab-Deusto has been designed so it can scale and multiple independent processes can be executed
not only in different machines, but also in the same machine to mitigate this effect. This way, having 4 processes
running WebLab-Deusto in a quad core machine will increase the throughput.

In the following drawing, the WebLab Bot (see WebLab Bot), which is a student simulator that tests different loads
of highly concurrent users (i.e. users clicking on the Reserve button at the very same time), measures times using
different numbers of processes (1 and 5) with different database backends (MySQLdb and PyMySQL). This shows
the reservation method:

As it is shown, when using a single process (1 core), MySQL performs better once you increase the number of
concurrent students. There are two Python libraries for using MySQL, one in pure Python (PyMySQL), and a native
one, which requires you compiling the code as explained in the section Installing native libraries. The native one
works faster than the pure Python version.

However, the biggest change is when you increase the number of processes (e.g., 5 core servers). This is
something you can not do if you are using SQLite, but yes with MySQL. For this reason, you will get an error when
you run:

$ weblab-admin create sample --cores 4
ERROR: sqlite engine selected for coordination, general database is
incompatible with multiple cores

The way to create a new WebLab-Deusto deployment with 4 core servers and using MySQL for both database and
scheduling is:

$ weblab-admin create sample --cores 4 --coordination-db-engine=mysql --db-
→˓engine=mysql

This generates a WebLab-Deusto system with 4 Core servers and 4 Login servers. Apache will balance the load of
users among them, so each of these process will only process a subset of the users.

2.4.3 Scheduling backends

So as to store information (permissions, uses, students, etc.), WebLab-Deusto uses a relational database (MySQL
or SQLite). However, for managing the scheduling (who’s first), it may use a relational database (again, MySQL or
SQLite) or the Redis NoSQL system. This backend also supports load balancing (and therefore, multiple core servers),
but since all the information is managed in memory, it is much faster.

Indeed, in the following figure the MySQLdb library with MySQL is compared with Redis, with 1 and 5 core servers.
As it can be seen in the drawing, Redis is considerably faster. In older machines, this difference is even multiplied.

For this reason, using Redis is recommended. However, Redis is not officially supported on Microsoft Windows at
this moment.

2.4.4 Apache

You should use a robust HTTP server instead of the one that comes by default when you pass the following option:

54 Chapter 2. Users

http://redis.io/

WebLab-Deusto Documentation, Release 5.0

Fig. 1: The red line represents the maximum value, the blue line the minimum value, and the green line the mean and
the standard deviation. Each measurement (e.g., 140 students with the MySQL db) have been taken 5 times.

2.4. Performance 55

WebLab-Deusto Documentation, Release 5.0

Fig. 2: The red line represents the maximum value, the blue line the minimum value, and the green line the mean and
the standard deviation. Each measurement (e.g., 140 students with the MySQL db) have been taken 5 times.

56 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

$ weblab-admin create sample --http-server-port=12345

At this moment, WebLab-Deusto generates the configuration for the Apache HTTP server, so you might use it. Support
for autogenerating the configuration of other servers might be added soon. When you create the deployment, the
message shown explains what you need to add in which files. For example, in GNU/Linux, at the time of this writing,
it details the following:

$ weblab-admin create sample

Congratulations!
WebLab-Deusto system created

Append the following to a new file that you must create called /etc/apache/conf.d/
→˓weblab

Include "/tmp/sample/httpd/apache_weblab_generic.conf"

And enable the modules proxy proxy_balancer proxy_http headers.
For instance, in Ubuntu you can run:

$ sudo a2enmod proxy proxy_balancer proxy_http headers

Then restart apache. If you don't have apache don't worry, delete sample and
run the creation script again but passing --http-server-port=8000 (or any free port).

This message is different in each operating system, and it takes into account what files it finds.

Additionally, as previously explained, Apache has different MPMs. In GNU/Linux, when PHP is installed, Apache
typically uses the preforkMPM. The workerMPM consumes much less memory, so it is recommended. However,
if you need to support PHP or you are working in other operating systems, you may use the existing MPM, although
you should measure how much memory is Apache consuming.

2.4.5 Raspberry Pi and low cost devices

WebLab-Deusto is a very light system, which does not require much memory. Indeed, we have successfully deployed
the whole system even in Raspberry Pi devices, and measured the results. As you can see in the following drawing, this
ARM device, with only 256 MB RAM, could manage different amounts of users, while the amount of time increased
fastly. It was using SQLite as database, everything (Experiment Server, Core Server, Laboratory Server and Login
Server) in a single process, and Redis (left) and SQLite (right) for scheduling.

As it can be seen there, even in a Raspberry Pi device, Redis is more suitable. However, in such a cheap device
(around $ 35) the system becomes substantially slower. The typical deployment is having a set of regular servers for
the main services (Core Server and Login Server), and multiple raspberries for the different experiments.

2.4.6 Summary

In this section, more complex deployments have been addressed. It uses extensively the weblab-admin script, and
therefore, it does not explain how this is managed internally. So as to understand the files generated by this script,
continue with the next section, Directory hierarchy.

2.5 Directory hierarchy

2.5. Directory hierarchy 57

http://httpd.apache.org/docs/2.2/en/mpm.html

WebLab-Deusto Documentation, Release 5.0

Fig. 3: The red line represents the maximum value, the blue line the minimum value, and the green line the mean and
the standard deviation. Each measurement (e.g., 140 students with the MySQL db) have been taken 5 times. Note that
each row has a different scale.58 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

Table of Contents

• Directory hierarchy

– Introduction

– Basic files and directories

– Configuration hierarchy

* Basic structure example

* Single process example

* Propagating configuration

* Multiple core servers

* Multiple machines

– Notes on addressing

– Security

– Summary

2.5.1 Introduction

WebLab-Deusto uses a directory hierarchy which is also used for managing configuration. Basically, if you create a
simple WebLab-Deusto instance:

$ weblab-admin create sample

You will see that it generates a set of files and directories:

+ sample
+ client
+ images

- logo.jpg
- logo-mobile.jpg

- configuration.yml
- core_host_config.py
+ db
- debugging.py
+ files_stored
+ httpd
- apache_weblab_generic.conf
- simple_server_config.conf

- lab1_config.py
+ logs
+ config

- (...)
- (...)

+ pub
(empty)

- run.py

2.5. Directory hierarchy 59

WebLab-Deusto Documentation, Release 5.0

2.5.2 Basic files and directories

The following files and directories are simple:

• client: contains the logo images. You can replace the images there directly.

• db: contains the databases, if stored in disk. When using SQLite, this will be the case and several *.db files
will be stored. When using MySQL, this directory will be empty.

• debugging.py: contains information about which ports are mapped to which functionalities. It is used by
the command weblab-admin monitor sample command, as well as by the Bot so as to know to what it
must be connected.

• files_stored: if storing files in a laboratory (such as the FPGA, CPLD or PIC laboratories), by de-
fault files will be located in this directory. Please note that so as to store files, you have to configure the
core_store_students_programs to True in the core_host_config.py file.

• httpd: contains configuration files for HTTP servers. By default, WebLab-Deusto comes with a built-in low
performance HTTP server for testing. However, it is recommended to use the Apache HTTP server. This
directory contains the configuration for both. In the future, we might generate configuration for other HTTP
servers, such as nginx.

• logs: contains the log files generated by the application. It also contains the config directory, which contains
the configuration on how much WebLab-Deusto should store.

• pub: contains public files or directories. They are available in http://localhost:8000/weblab/web/pub/ . You can
always change them here, or in the Administration panel (in System: Public directory). If you are developing a
new laboratory in JavaScript for example, you can put it there.

• run.py: the script that will launch this WebLab-Deusto instance.

Note that we have skipped a set of files (configuration.yml, core_host_config.py, lab1_config.py)
in purpose. They are explained in the whole following section.

2.5.3 Configuration hierarchy

WebLab-Deusto uses a configuration hierarchy. This hiearchy is based on three major concepts:

• Host: refers to a physical computer.

• Process: refers to a process running in a host*.

• Component: refers to a functionality running in an process*.

Note: If you come from a previous WebLab-Deusto installation, you might be wondering that the terms do not fit.
What it used to be machine is now called host, what it used to be instance is now called process, and what it used to
be called server is now called component. The previous names were not explaining much what they were doing.

All the components described in Technical description are components using these categories. Each experiment server
(e.g., a Robotics experiment) is a component.

Now, components can be grouped in a single process (at operating system level, this is indeed a single process) in a
single host. However, they may also be distributed among different hosts (computers), each one containing multiple
processes. For this reason, WebLab-Deusto provides a middleware that manages the communications, providing an
addressing and registry system. For example, core servers are not implemented knowing where are the laboratory
server. They ask the registry for a laboratory server, and they get the closest one, wherever it is and whatever the
communication protocol is used.

60 Chapter 2. Users

http://localhost:8000/weblab/web/pub/

WebLab-Deusto Documentation, Release 5.0

This enables flexibility supporting multiple types of deployments. For instance, in a standalone system in a Single
Board Computer (such as a Raspberry Pi), it is possible to deploy the whole thing in a single process. The commu-
nications among all the different components will not use HTTP or so, but simply a function call in Python. This
optimization is provided by this middleware: if a Core server and a Laboratory server are in the same process, the
communication will always be direct: when the Core server calls a method of the Laboratory server, internally it will
be simply calling that method in the Laboratory server. However, if they are separated in a different network, it will
use a network based protocol.

Basic structure example

Let’s see a couple of example prior to proceeding. By running (as before):

$ weblab-admin create sample

We can see how this is generated (skipping the basic files explained above):

(...)
- configuration.yml
- core_host_config.py
- lab1_config.py
(...)

If we open the configuration.yml file, we find the following:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
laboratory1:
components:
experiment1:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
laboratory1:

config_file: lab1_config.py
protocols:
port: 10001

type: laboratory

If you are not familiar with YAML, it is a very simple format where you can describe information quite condensed.
In this case, you can see that there is a list of hosts, which is core_host, which has some properties (such as
runner: run.py or config_file: core_host_config.py). It also has processes, and in this case, the list of
processes contains two: core_process1 and laboratory1. The first one has a single component called core
(which is a Core Server according to its type) and the second one contains two components experiment1 and
laboratory1 (which is a Laboratory Server, according to its type).

2.5. Directory hierarchy 61

WebLab-Deusto Documentation, Release 5.0

In this case, the core server will communicate with the Laboratory Server through a network in localhost, using
an HTTP message in this case, as shown in the following diagram, while the Laboratory server will contact the
Experiment Server using a simple Python call (it is in the same process).

Single process example

So as to illustrate a more compact example, where all the servers are running in a single process, run the following:

$ weblab-admin create sample2 --inline-lab-server

While the files are kind of the same, you can notice that the configuration.yml changes considerably:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
experiment1:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
laboratory1:

config_file: lab1_config.py
type: laboratory

As explained above, this hierarchy represents a single host (core_ohst1) running a single process
(core_process1), running three components (experiment1, laboratory1 and core). Since they are all

62 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

in the same process, all the communication between the different servers will use the so-called Direct protocol
(calling directly the function without using any network), regardless the configured protocols. Therefore, the gener-
ated structure is as follows:

Propagating configuration

During the example above, we’ve seen that it was possible to add configuration files such as:

config_file: lab1_config.py

or configuration variables directly such as:

config:
core_facade_port: 10000
core_facade_server_route: route1

There is also third approach which is:

config_files: [lab1_config.py, lab2_config.py]

or, alternatively:

config_files:
lab1_config.py
lab2_config.py

Furthermore, the mechanisms can be combined, so the following is valid:

config_file: general_config.py
config:

port: 12345

However, each mechanism can not be repeated (so you can’t have two config or two config_file for the same
level). This is not a problem, though (in a single config you can put as many values as you want, and if you need
more than one config_file, then you need a config_files).

2.5. Directory hierarchy 63

WebLab-Deusto Documentation, Release 5.0

These parameters can be put in any level of the hierarchy (global, host, process or component). When a component
is running, it will have access to all those values which are accessible in its direct path to the root. In case of conflict
(a variable defined in two levels), the one defined at a lowest level shadows the other for that component (e.g., if
something is declared at a process level and at host level, the component under that process will obtain the value
defined at process level).

So as to show this more clear, if we have this scenario:

(...)
config:

var1: global
var2: global

hosts:
core_host:
config:

var2: host
var3: host

processes:
core_process1:

config:
var3: process
var4: process

components:
core:
type: core
config:
var4: component

The core component will see that var1 is “global”, var2 is “host”, var3 is “process” and var4 is “component”.

The full list of configuration variables are listed in Configuration variables.

Multiple core servers

Let’s take a more complex example, involving more laboratories and more core servers. Here we assume that you have
installed MySQL and the PyMySQL driver as suggested in Installation: further steps, and therefore we can run more
than one core server. Running:

$ weblab-admin create sample3 --lab-copies=2 --dummy-copies=5 --cores=3 --db-
→˓engine=mysql --coordination-db-engine=mysql

With this command, we are creating a new deployment where there will be 5 copies of an experiment, 3 core and login
servers and 2 laboratory servers. The use of MySQL both for database backend and for coordination is required, since
otherwise it will be using SQLite, which does not support concurrent access by multiple processes.

The generated hierarchy is the following:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000

(continues on next page)

64 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

core_facade_server_route: route1
type: core

core_process2:
components:
core:
config:
core_facade_port: 10001
core_facade_server_route: route2

type: core
core_process3:

components:
core:
config:
core_facade_port: 10002
core_facade_server_route: route3

type: core
laboratory1:
components:
experiment1:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
experiment3:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
experiment5:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
laboratory1:

config_file: lab1_config.py
protocols:
port: 10003

type: laboratory
laboratory2:
components:
experiment2:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
experiment4:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
laboratory2:

config_file: lab2_config.py
protocols:
port: 10004

type: laboratory

As requested, 3 Core servers have been created. Each pair has been created in a single process, so there are

2.5. Directory hierarchy 65

WebLab-Deusto Documentation, Release 5.0

core_process1, core_process2 and core_process3. Each of them will have a core component. On
the other hand, it was requested to create 5 copies of an experiment (and therefore, 5 Experiment servers) and only
2 Laboratory servers. Since an Experiment server can only be associated to a single Laboratory server, the number
of Experiment servers have been divided among the available Laboratory servers. The communication between each
Laboratory server and each Experiment server will be Direct, since they will be in the same process. However, the
communication among the Core servers and the Laboratory servers will use the most suitable network protocol, which
by default it will be a HTTP format.

This configuration is represented with the following figure:

Multiple machines

So as to generate more than one machine with the weblab-admin script, run the following:

$ weblab-admin create sample4 --xmlrpc-experiment

66 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

This command is intended for deploying laboratories that use XML-RPC (such as those laboratories developed in
programming languages other than Python). This command generates the deployment detailed in the following figure:

If we look at the configuration.yml file, we can appreciate the following:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
laboratory1:
components:
laboratory1:

config_file: lab1_config.py
protocols:
port: 10001

type: laboratory
exp_host:
runner: run-xmlrpc.py
host: 127.0.0.1
processes:
exp_process:

components:
experiment1:

class: experiments.dummy.DummyExperiment
protocols:
port: 10002
supports: xmlrpc

type: experiment

There are two hosts: exp_host and core_host. The core_host contains the Laboratory server (in the
laboratory1 process) and the Core server (in the core_process1 process). The exp_host has a sin-
gle process which has a single component which is the experiment1. Since experiment1 states that it only

2.5. Directory hierarchy 67

WebLab-Deusto Documentation, Release 5.0

supports: xmlrpc, then the Laboratory Server will use XML-RPC to contact it.

2.5.4 Notes on addressing

In the addressing system used, one component called experiment1 at the process laboratory1 at the host
core_machine will be refered as:

experiment1:laboratory1@core_host

For this reason, in some parts of the configuration files you will notice that the core server defines:

core_coordinator_laboratory_servers = {
'laboratory1:core_process1@core_host' : {

'exp1|dummy|Dummy experiments' : 'dummy1@dummy',
},

}

Where it defines “there is a Laboratory server which is identified by laboratory1 in the core_process1 pro-
cess, which is in the core_host host. Similarly, you will see that the Laboratory is configured as:

laboratory_assigned_experiments = {
'exp1:dummy@Dummy experiments' : {

'coord_address' : 'experiment1:core_process1@core_host',
'checkers' : ()

},
}

Here, the configuration establishes that a particular experiment (at database level) is located in a particular address.
You will notice that this address is using the format explained.

2.5.5 Security

If you are going to deploy one of the servers in a different network and you want some basic security (e.g., the core
server in a location and a laboratory server in a different location), you’re encouraged to use one of the two
following options (or both):

• Configure your firewall so only your core server can access (via IP)

• Use the auth parameter in the protocols section

For example, if you put the following in your configuration.yml:

exp_host:
runner: run-xmlrpc.py
host: 127.0.0.1
processes:
exp_process:

components:
experiment1:
class: experiments.dummy.DummyExperiment
protocols:

port: 10002
auth: RANDOM-SHARED-KEY

type: experiment

Then the clients will always provide that shared key (RANDOM-SHARED-KEY in this case, put something random in
your case) when contacting that server, and the server will require that shared key so as to process requests.

68 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

2.5.6 Summary

The focus of this section is showing the basics of the configuration subsystem of WebLab-Deusto. You may use the
type of setting that suits better your system, even modifying it by yourself instead of using the weblab-admin
script (or modifying the results of this script). With this section, you should be able to customize these aspects of the
deployments.

2.6 Authentication

Table of Contents

• Authentication

– OAuth 2.0

* Registering the application

– OpenID

* Use case

* Settings

– Based on IP

– LDAP

– Extending the system

* Simple

* Web protocol systems

WebLab-Deusto provides an extensible authentication mechanism. This way, all users are stored in the database, but
different UserAuth mechanisms can be used for each user. The system will check for each user what mechanisms are
available, and will check the credentials with each system. If any of the mechanisms say that the user is valid, the
authentication mechanism will understand that it’s a valid user.

For instance, if a password is provided by ‘student1’, who has two UserAuth, one providing a password hash stored
in the database, and another one detailing a certain LDAP server that is valid for this user, then the system will check
one system and then the other. If any of them says that it is correct, it does not check more systems. The order of
these systems is detailed in the database, so it will first check local passwords and then it will check LDAP servers,
for instance.

2.6.1 OAuth 2.0

WebLab-Deusto can be easily integrated in Facebook through OAuth 2.0, as seen in http://apps.facebook.com/
weblab-deusto/

Supporting other OAuth 2.0 systems for authentication should be simple, although some work would be required.

When first logging in the application, a website will offer two choices:

• Providing the WebLab-Deusto credentials, so the facebook account and the WebLab-Deusto accounts will be
linked.

• Create a new WebLab-Deusto user, linked to this facebook account. When creating this user, the system will
grant the same permissions the demo user has.

2.6. Authentication 69

http://apps.facebook.com/weblab-deusto/
http://apps.facebook.com/weblab-deusto/

WebLab-Deusto Documentation, Release 5.0

From this point, users will automatically see the experiments they have permissions to use, just as if they were logging
in the WebLab-Deusto client, with the only difference that experiments are adapted to the Facebook constraints. For
instance, Flash and Java experiments are resized to fit in the constraints imposed by Facebook (with a small fixed
width).

Registering the application

In http://www.facebook.com/developers/ anyone can create applications for free. The application must use the iframe
mode, pointing to the /weblab/login/facebook/.

The Login Server must be configured with the following Facebook parameters:

The server where the WebLab-Deusto is deployed
The link to the Facebook application, as you registered it.
login_facebook_url = ""
login_facebook_client_address = ""
login_facebook_auth_url = "http://www.facebook.com/dialog/oauth?client_id=%s&
→˓redirect_uri=%s&scope=email"
The Facebook Application identifier, available in http://www.facebook.com/
→˓developers/
login_facebook_app_id = ""
login_facebook_canvas_url = ""

Additionally, the Login Server must be configured to establish which permissions will have new users created through
Facebook (if this is enabled) with the following configuration values in the Login Server configuration file:

login_not_linkable_users = ['demo']
login_default_groups_for_external_users = ['Demos']

(continues on next page)

70 Chapter 2. Users

http://www.facebook.com/developers/

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

login_creating_external_users = True
login_linking_external_users = True

The login_not_linkable_users points to which users you don’t want anyone to link. For instance, in the
University of Deusto we use a user called “demo” with a public password (“demo”) for demos. Since we don’t want
anyone to acquire this username, we set this property.

The login_default_groups_for_external_users property refers to the groups that will be used for new
users through Facebook. Later administrators can select what permissions do these groups have.

Finally, the boolean properties login_creating_external_users and
login_linking_external_users can be established if these features are not desired.

2.6.2 OpenID

OpenID is an open standard that enables the decentralized authentication. The authentication process, which consists
on a user demonstrating the system that he really is who claims to be, can be handled by remote servers in a transparent
way.

Use case

This way, if a university (University A) wants to share their experiments with other university (University B) in a very
simple way, students of University B can be registered as OpenID users. As long as the consumer university (Uni-
versity B) counts with an OpenID server (e.g., in Spain the RedIRIS SIR provides http://yo.rediris.es/soy/username@
universitydomain as OpenID for those universities enroled), they can provide a list such as:

student1, Student One, student1@universityb.edu, http://oid.universityb.edu/student1
student2, Student Two, student2@universityb.edu, http://oid.universityb.edu/student2
...

The provider university (University A) can then use the Database Manager to add these users as OpenID users. From
this point, these students can log in:

/weblab/login/web/openid/verify?user_id=http://sso.universityb.edu/openid/student1

At this point, WebLab-Deusto will redirect student1 to the OpenID handler at universityb.edu. Student1 will provide
the credentials to his university (University B), and University B will then redirect again to WebLab-Deusto, with
certain tokens known by WebLab-Deusto, and therefore logging in automatically.

It’s important to note that even if the authentication phase is performed in other university, these users are still local
users for University A.

This type of deployment is especially useful when dealing with Learning Management Systems that use some kind
of Single Sign-On system. If student1 enters in http://moodle.universityb.edu/, which first requires authentication
redirecting http://sso.universityb.edu/, then when http://moodle.universityb.edu/ shows an iframe pointing to http:
//weblab.universitya.edu/weblab/login/web/openid/verify?user_id=http://sso.universityb.edu/openid/student1, the sys-
tem will automatically show WebLab-Deusto logged in.

Settings

The following configuration values can be defined in the Login Server configuration (default values are provided):

2.6. Authentication 71

http://en.wikipedia.org/wiki/OpenID
http://www.rediris.es/
http://www.rediris.es/sir/
http://yo.rediris.es/soy/username@universitydomain
http://yo.rediris.es/soy/username@universitydomain
http://en.wikipedia.org/wiki/Learning_Management_System
http://en.wikipedia.org/wiki/Single_Sign-On
http://moodle.universityb.edu/
http://sso.universityb.edu/
http://moodle.universityb.edu/
http://weblab.universitya.edu/weblab/login/web/openid/verify?user_id=http://sso.universityb.edu/openid/student1
http://weblab.universitya.edu/weblab/login/web/openid/verify?user_id=http://sso.universityb.edu/openid/student1

WebLab-Deusto Documentation, Release 5.0

Only used when connecting to /weblab/login/web/openid/, shows a form where the %s
→˓will be user ID
login_openid_domains = {

'UNED' : 'http://yo.rediris.es/soy/%s@uned.es',
'UNED-INNOVA' : 'http://yo.rediris.es/soy/%s@innova.uned.es',
'DEUSTO' : 'http://yo.rediris.es/soy/%s@deusto.es'

}
login_openid_host = 'https://www.weblab.deusto.es'
login_openid_client_url = '/weblab/client/'
login_openid_base_openid = '/weblab/login/web/openid/'

2.6.3 Based on IP

Under certain and limited circumstances, administrators may want to be able to authenticate as a given local user
without providing a password. For instance, University A could have two students of University B (called student1
and student2). University A could define “I will let http://moodle.universityb.edu/ to log in as student1 and student2
without asking for a password”.

In order to do so, WebLab-Deusto supports the “TrustedIP” system. In order to do so, a new row is inserted in the Auth
table, referencing to TRUSTED-IP-ADDRESSES in AuthType. The configuration defines the supported IP addresses,
separated by commas if multiple are required (such as 127.0.0.1, 130.206.138.16). Then, new rows are required in
UserAuth, one per each User, pointing to the new Auth. No configuration is required in the UserAuth. From this point,
those users can be logged in through /weblab/login/web/login/?username=student1 without providing a password from
the defined IP addresses.

2.6.4 LDAP

LDAP is an application protocol for reading and writing directories. Through these protocols it’s possible to gather
information of students from a LDAP infrastructure of the University, and it is possible to use LDAP to authenticate
users.

WebLab-Deusto uses LDAP to register users and to check that the password provided by the user is the password used
in the system. Therefore, for a certain amount of time, the university credentials are handled by WebLab-Deusto. It
does not store it in any format, but if the WebLab-Deusto server is hacked, the credentials of those users using the
system during that time are in danger. In the University of Deusto this is the system used with our students. However,
if you still don’t trust it and prefer other solutions, check other systems.

Note: How to use LDAP has not been yet documented.

2.6.5 Extending the system

The authentication system is based on plug-ins. It can be extended by implementing a proper plug-in in Python. This
section covers how to implement one system.

WebLab-Deusto differentiates among two different types of authentication systems:

• Simple: those systems which receive the username and password, and check if the user is who claims to be. Ex-
amples of these systems are LDAP, password stored in the database, or checking that it comes from a particular
IP address.

72 Chapter 2. Users

http://moodle.universityb.edu/
http://en.wikipedia.org/wiki/LDAP
http://en.wikipedia.org/wiki/Directory_services

WebLab-Deusto Documentation, Release 5.0

• Web protocol systems: those systems which do not receive simply a username and password, but which require
an external web protocol. For example, using OAuth 2.0, the user will be forwarded to a particular page that
must exist. Or in OpenID, the foreign system will redirect users to a particular page that also must exist.

So basically: if the system you are trying to design requires that WebLab-Deusto provides a new web service or
anything to a third system, you should use the second approach. However, if you receive a certain username and
password, you may use the first approach.

Simple

All the protocols implemented using the Simple approach are located in the weblab.login.simple package. On it, you
will see different modules, one per each system. The most simple plug-in would be the following:

from weblab.core.login.simple import SimpleAuthnUserAuth

class MyPluginUserAuth(SimpleAuthnUserAuth):

NAME = 'MY-PLUGIN'

def __init__(self, auth_configuration, user_auth_configuration):
""" auth_configuration is how the particular system is configured in an
instance. For instance, 30 students may use a LDAP repository, while other
30 students are using other LDAP repository. Therefore a plug-in for LDAP
is implemented, and later with the administration panel you may establish
that the first 30 students use an instance of the LDAP plug-in, and other
30 students other instance. The details of the repository would come in the
auth_configuration (common for many users).

However, in the case of the hashed passwords in the database, the
auth_configuration is empty, and user_auth_configuration contains the
particular hashed pasword.

Both arguments are strings.
"""
pass

def authenticate(self, login, password):
Do something with auth_configuration, user_auth_configuration and
then return True or False if the login and password match proper
credentials.
return True

Once this class is created and is located in the proper module, the last lines of the weblab/login/simple/__init__.py to
register the plug-in. In this example:

from weblab.core.login.simple.db_auth import WebLabDbUserAuth
from weblab.core.login.simple.ldap_auth import LdapUserAuth
from weblab.core.login.simple.ip_auth import TrustedIpAddressesUserAuth
Just added
from weblab.core.login.simple.my_plugin import MyPluginUserAuth

SIMPLE_PLUGINS = {
WebLabDbUserAuth.NAME : WebLabDbUserAuth,
LdapUserAuth.NAME : LdapUserAuth,
TrustedIpAddressesUserAuth.NAME : TrustedIpAddressesUserAuth,
Put your plug-in here.

(continues on next page)

2.6. Authentication 73

https://github.com/weblabdeusto/weblabdeusto/tree/master/server/src/weblab/core/login/simple
https://github.com/weblabdeusto/weblabdeusto/tree/master/server/src/weblab/core/login/simple/__init__.py

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

MyPluginUserAuth.NAME : MyPluginUserAuth
}

From this point, those user with this authentication mechanism would be validated by it.

Web protocol systems

So as to support those systems using a login subsystem that requires an external protocol, a slightly more complicated
process is required. You may find examples in the weblab.login.web package. As you will notice, two classes are
required, so the most simple system that you can implement is the following:

from weblab.core.login.web import ExternalSystemManager, weblab_api
import weblab.core.server as core_api

from weblab.data.dto.users import User
from weblab.data.dto.users import StudentRole

class MyManager(ExternalSystemManager):

NAME = 'MYPLUGIN'

@logged(log.level.Warning)
def get_user(self, credentials):

"""Use credentials to validate in the remote system."""

credentials might be a token to retrieve information
such as the full name, the email or the login.

login = "user2132@myplugin"
full_name = "John Doe"
email = "john.doe@deusto.es"

user = User(login, full_name, email, StudentRole())
return user

def get_user_id(self, credentials):
login = self.get_user(credentials).login
login is "13122142321@myplugin"
return login.split('@')[0]

@weblab_api.route_login_web('/my/')
def my_web():

""" This is a complete Flask-compliant system, although
some methods are inherited from WebPlugin that make it
easier to work with. """

Here you can contact other URLs or provide multiple
different methods.

Once you have something to check credentials with
such as tokens or whatever, you may call the following
method:
session_id = core_api.extensible_login(MyManager.NAME, whatever_token)

And you may pass it however you want to the final user:

(continues on next page)

74 Chapter 2. Users

https://github.com/weblabdeusto/weblabdeusto/tree/master/server/src/weblab/core/login/web

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

return ("<html><body>This HTML content will be "
"displayed %s</html>" % session_id.id)

Once you write the WSGI-compliant web application, you can register it in the last lines of the we-
blab/core/login/web/__init__.py as follows:

from weblab.core.login.web.login import LoginPlugin
from weblab.core.login.web.facebook import FacebookManager
from weblab.core.login.web.openid_web import OpenIDManager
from weblab.core.login.web.myplugin import MyManager

EXTERNAL_MANAGERS = {
FacebookManager.NAME : FacebookManager(),
OpenIdManager.NAME : OpenIDManager(),
Your plug-in here
MyManager.NAME : MyManager(),

}

2.7 Tools

Table of Contents

• Tools

– WebLab Admin

* Instance creation

* Starting an instance

* Stopping an instance

* Upgrading an instance

* Upgrading locations of an instance

* Upgrading the web server configurations of an instance

– WebLab Bot

– Experiment Server Tester

– VISIR Battle Tester

2.7.1 WebLab Admin

WebLab-Deusto provides a command called weblab-admin for interacting with installations of WebLab-Deusto.
You’ll find the latest documentation by running:

$ weblab-admin --help
$ weblab-admin <command> --help

The following is the output of these commands as of June 2016.

2.7. Tools 75

https://github.com/weblabdeusto/weblabdeusto/tree/master/server/src/weblab/core/login/web/__init__.py
https://github.com/weblabdeusto/weblabdeusto/tree/master/server/src/weblab/core/login/web/__init__.py

WebLab-Deusto Documentation, Release 5.0

Instance creation

Running weblab-admin create --help returns:

Usage: weblab-admin create DIR [options]

Options:
-h, --help show this help message and exit
-f, --force Overwrite the contents even if the directory already

existed.
-q, --quiet Do not display any output.
-v, --verbose Show more information about the process.
--not-interactive Run the script in not interactive mode. Recommended

for scripts only.
--socket-wait=PORT Wait for a socket connection rather than sigterm/input
--add-test-data Populate the database with sample data
--cores=CORES Number of core servers.
--start-port=START_PORTS

From which port start counting.
-i SYSTEM_IDENTIFIER, --system-identifier=SYSTEM_IDENTIFIER

A human readable identifier for this system.
--enable-https Tell external federated servers that they must use

https when connecting here
--base-url=BASE_URL Base location, before /weblab/. Example: /deusto.
--http-server-port=HTTP_SERVER_PORT

Enable the builtin HTTP server (so as to not require
apache while testing) and listen in that port.

--entity-link=ENTITY_LINK
Link of the host entity (e.g. http://www.deusto.es).

--logo-path=IMG_FILE_PATH
Path of the entity logo.

--server-host=SERVER_HOST
Host address of this machine. Example: weblab.domain.

--poll-time=POLL_TIME
Time in seconds that will wait before expiring a user
session.

--no-lab Do not create any laboratory server or experiment
server.

--inline-lab-server Laboratory server included in the same process as the
core server. Only available if a single core is used.

--lab-copies=LAB_COPIES
Each experiment can be managed by a single laboratory
server. However, if the number of experiments managed
by a single laboratory server is high, it can become a
bottleneck. This bottleneck effect can be reduced by
balancing the amount of experiments among different
copies of the laboratories. By establishing a higher
number of laboratories, the generated deployment will
have the experiments balanced among them.

--ignore-locations Ignore locations. Otherwise, it will tell you to
download two files for GeoLocation

Administrator data:
Administrator basic data: username, password, etc.

--admin-user=ADMIN_USER
Username for the WebLab-Deusto administrator

--admin-name=ADMIN_NAME

(continues on next page)

76 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

Full name of the administrator
--admin-password=ADMIN_PASSWORD

Administrator password ('password' is the default)
--admin-mail=ADMIN_MAIL

E-mail address of the system administrator.

Experiments options:
While most laboratories are specific to a particular equipment, some
of them are useful anywhere (such as the VM experiment, as long as you
have a VirtualBox virtual machine that you'd like to deploy, or the
logic game, which does not require any equipment). Other experiments,
such as VISIR, have been deployed in many universities. Finally, for
development purposes, the XML-RPC experiment is particularly useful.

--xmlrpc-experiment
By default, the Experiment Server is located in the
same process as the Laboratory server. However, it is
possible to force that the laboratory uses XML-RPC to
contact the Experiment Server. If you want to test a
Java, C++, .NET, etc. Experiment Server, you can
enable this option, and the system will try to find
the Experiment Server in other port

--xmlrpc-experiment-port=XMLRPC_EXPERIMENT_PORT
What port should the Experiment Server use. Useful for
development.

--dummy-experiment-name=DUMMY_NAME
There is a testing experiment called 'dummy'. You may
change this name (e.g. to dummy1 or whatever) by
changing this option.

--dummy-category-name=DUMMY_CATEGORY_NAME
You can change the category name of the dummy
experiments. (by default, Dummy experiments).

--dummy-copies=DUMMY_COPIES
You may want to test the load balance among different
copies of dummy.

--dummy-silent Not show the commands sent to the dummy experiment.
--visir, --visir-server

Add a VISIR server to the deployed system.
--visir-slots=SLOTS

Number of concurrent users of VISIR.
--visir-experiment-name=EXPERIMENT_NAME

Name of the VISIR experiment.
--visir-base-url=VISIR_BASE_URL

URL of the VISIR system (e.g. http://weblab-
visir.deusto.es/electronics/). It should contain
login.php, for instance.

--visir-measurement-server=MEASUREMENT_SERVER
Measurement server. E.g. weblab-visir.deusto.es:8080

--visir-use-php VISIR can manage the authentication through a PHP
code. This option is slower, but required if that
scheme is used.

--visir-login=USERNAME
If the PHP version is used, define which username
should be used. Default: guest.

--visir-password=PASSWORD
If the PHP version is used, define which password
should be used. Default: guest.

(continues on next page)

2.7. Tools 77

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

--logic, --logic-server
Add a logic server to the deployed system.

--vm, --virtual-machine, --vm-server
Add a VM server to the deployed system.

--vm-experiment-name=EXPERIMENT_NAME
Name of the VM experiment.

--vm-storage-dir=STORAGE_DIR
Directory where the VirtualBox machines are located.
For example: c:\users\lrg\.VirtualBox\Machines

--vbox-vm-name=VBOX_VM_NAME
Name of the Virtual Box machine which this experiment
uses. Is often different from the Hard Disk name.

--vbox-base-snapshot=VBOX_BASE_SNAPSHOT
Name of the VirtualBox snapshot to which the system
will be reset after every usage. It should be an
snapshot of an started machine. Otherwise, it will
take too long to start.

--vm-url=URL URL which will be provided to users so that they can
access the VM through VNC. For instance:
vnc://192.168.51.82:5901

--http-query-user-manager-url=URL
URL through which the user manager (which runs on the
VM and resets it when needed) can be reached. For
instance: http://192.168.51.82:18080

--vm-estimated-load-time=LOAD_TIME
Estimated time which is required for restarting the
VM. Does not need to be accurate. It is displayed to
the user and is essentially for cosmetic purposes.

Federation options:
WebLab-Deusto at the University of Deusto federates a set of
laboratories. You may put them by default in your WebLab-Deusto
instance.

--add-fed-submarine
Add the submarine laboratory.

--add-fed-logic Add the logic laboratory.
--add-fed-visir Add the VISIR laboratory.

Session options:
WebLab-Deusto may store sessions in a database, in memory or in
redis.Choose one system and configure it.

--session-storage=SESSION_STORAGE
Session storage used. Values: sql, redis, memory.

--session-db-engine=SESSION_DB_ENGINE
Select the engine of the sessions database.

--session-db-host=SESSION_DB_HOST
Select the host of the session server, if any.

--session-db-port=SESSION_DB_PORT
Select the port of the session server, if any.

--session-db-name=SESSION_DB_NAME
Select the name of the sessions database.

--session-db-user=SESSION_DB_USER
Select the username to access the sessions database.

--session-db-passwd=SESSION_DB_PASSWD
Select the password to access the sessions database.

(continues on next page)

78 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

--session-redis-db=SESSION_REDIS_DB
Select the redis db on which store the sessions.

--session-redis-host=SESSION_REDIS_HOST
Select the redis server host on which store the
sessions.

--session-redis-port=SESSION_REDIS_PORT
Select the redis server port on which store the
sessions.

Database options:
WebLab-Deusto uses a relational database for storing users,
permissions, etc.The database must be configured: which engine,
database name, user and password.

--db-engine=DB_ENGINE
Core database engine to use. Values: mysql, sqlite.

--db-name=DB_NAME Core database name.
--db-host=DB_HOST Core database host.
--db-port=DB_PORT Core database port.
--db-user=DB_USER Core database username.
--db-passwd=DB_PASSWD

Core database password.

Scheduling options:
These options are related to the scheduling system. You must select
if you want to use a database or redis, and configure it.

--coordination-engine=COORD_ENGINE
Coordination engine used. Values: sql, redis.

--coordination-db-engine=COORD_DB_ENGINE
Coordination database engine used, if the coordination
is based on a database. Values: mysql, sqlite.

--coordination-db-name=COORD_DB_NAME
Coordination database name used, if the coordination
is based on a database.

--coordination-db-user=COORD_DB_USER
Coordination database userused, if the coordination is
based on a database.

--coordination-db-passwd=COORD_DB_PASSWD
Coordination database password used, if the
coordination is based on a database.

--coordination-db-host=COORD_DB_HOST
Coordination database host used, if the coordination
is based on a database.

--coordination-db-port=COORD_DB_PORT
Coordination database port used, if the coordination
is based on a database.

--coordination-redis-db=COORD_REDIS_DB
Coordination redis DB used, if the coordination is
based on redis.

--coordination-redis-passwd=COORD_REDIS_PASSWD
Coordination redis password used, if the coordination
is based on redis.

--coordination-redis-host=COORD_REDIS_HOST
Coordination redis host used, if the coordination is
based on redis.

--coordination-redis-port=COORD_REDIS_PORT
(continues on next page)

2.7. Tools 79

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

Coordination redis port used, if the coordination is
based on redis.

Starting an instance

Running weblab-admin start --help returns:

Usage: weblab-admin start DIR [options]

Options:
-h, --help show this help message and exit
-m HOST, --host=HOST, --machine=HOST

If there is more than one host in the configuration,
which one should be started.

-l, --list-hosts, --list-machines
List hosts.

-s SCRIPT, --script=SCRIPT
If the runner option is not available, which script
should be used.

Stopping an instance

The command weblab-admin stop <instance_directory> does not have any option. It stops all the
processes of the instance.

Upgrading an instance

The command weblab-admin upgrade <instance_directory> --help returns:

usage: weblab-admin [-h] [-y]

WebLab upgrade tool.

optional arguments:
-h, --help show this help message and exit
-y, --yes Say yes to everything

Upgrading locations of an instance

The command weblab-admin locations <instance_directory> --help returns:

usage: weblab-admin locations DIR [options]

optional arguments:
-h, --help show this help message and exit
--redownload Force redownload of databases
--reset-database Reset the database, forcing the server to download all the

data again
--reset-cache Reset the database, forcing the server to download all the

data again

80 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

Upgrading the web server configurations of an instance

The command weblab-admin httpd-config-generate <instance_directory does not have any op-
tion. It just re-generates the web server configuration.

2.7.2 WebLab Bot

A Remote Laboratory is a software system that requires a complex workflow and that will require to face big load
of users in certain moments. There are different constraints that have an impact on the latency and performance of
WebLab-Deusto:

• Deployment configuration: only one server, multiple servers, storing sessions in database or in memory. . .

• Deployed system: what machine, operating system, Python or MySQL versions. . .

• Tens or hundreds of students being queued

• Tens or hundreds of students using experiments

In order to test these variables easily, a students simulator has been implemented, and it is called WebLab Bot. The
WebLab Bot tool is used for three purposes:

• Measure the time with each configuration

• Perform stress tests of the system, finding the errors created when developing new features

• Test the system in new operating systems or software versions

So as to run it, you need a configuration file, such as the one available in tools/Bot/configuration.py.dist. Copy it to
configuration.py and change the required variables (e.g., change the credentials, URLs, etc.). The consumer/
run.py referes to the run.py file generated whenever you created an environment, such as:

$ weblab-admin create consumer

The number of iterations define how many times the same scenario will be repeated. The number of concurrent users
is defined in the generate_scenarios method, in the different two for loops. You may add other loops or change these,
but the idea is that in this example, it will be tested with 1 student, 2, 3, 4, 5, 10, 15, 20, 25 . . . , 140, 145 and 150:

2.7. Tools 81

https://github.com/weblabdeusto/weblabdeusto/tree/master/tools/Bot/configuration.py.dist

WebLab-Deusto Documentation, Release 5.0

for protocol in cfg_util.get_supported_protocols():
for number in range(1, 5):

scenarios.append(
Scenario(

cfg_util.new_bot_users(number, new_standard_bot_user, 0, STEP_
→˓DELAY, protocol),

protocol, number
)

)

for number in range(5, 151, 5):
scenarios.append(

Scenario(
cfg_util.new_bot_users(number, new_standard_bot_user, STEP_DELAY

→˓* (5 -1), STEP_DELAY, protocol),
protocol, number

)
)

Additionally, you need to install matplotlib:

(in Ubuntu, the following requires some packages, such as build-essential,
→˓libfreetype6-dev or libpng-dev)
pip install matplotlib

Then, simply call:

weblab-bot.py

This will start the WebLab-Deusto instance, run the proposed scenario, and then stop it, for each iteration and scenario
defined. Running it will generate the following output:

CONFIGURATION consumer/run.py
Unique id: D_2013_03_31_T_11_38_17_

New trial. 1 iterations
iteration 0 . {'route1': 1} [0 exceptions]

Cleaning results... Sun Mar 31 11:38:28 2013
Storing results... Sun Mar 31 11:38:28 2013
Results stored Sun Mar 31 11:38:28 2013

-> Scenario: <Scenario category="JSON" identifier="1" />
-> Results stored in logs/botclient_D_2013_03_31_T_11_38_17__SCEN_0_CONFIG_0.pickle
-> Serializing results...
-> Done

[...]

New trial. 1 iterations
iteration 0 {'route1': 4} [0 exceptions]

Cleaning results... Sun Mar 31 11:39:19 2013
Storing results... Sun Mar 31 11:39:19 2013
Results stored Sun Mar 31 11:39:19 2013

-> Scenario: <Scenario category="JSON" identifier="4" />
-> Results stored in logs/botclient_D_2013_03_31_T_11_38_17__SCEN_3_CONFIG_0.pickle
-> Serializing results...

(continues on next page)

82 Chapter 2. Users

http://matplotlib.org/

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

-> Done
Writing results to file raw_information_D_2013_03_31_T_11_38_17_.dump... 2013-03-31
→˓11:39:19.866922
Generating graphics...
Executing figures/generate_figures_D_2013_03_31_T_11_38_17_.py... [done]
HTML file available in botclient_D_2013_03_31_T_11_38_17_.html
Finished plotting; Sun Mar 31 11:39:31 2013, 251 millis
Done 2013-03-31 11:39:31.251789

The HTML file that it points out contains all the graphics for each method.

If you don’t want to start the process each time (e.g., you want to test it with an existing WebLab-Deusto instance that
you don’t want to stop), then, pass the following argument:

weblab-bot.py --dont-start-processes

As in the case of weblab-admin, in UNIX systems you may also use weblab-bot (instead of weblab-bot.
py).

2.7.3 Experiment Server Tester

Warning: THIS TOOL NEEDS TO BE UPGRADED TO SUPPORT THE NEW APIs

In order to make it easy to test the experiment server under development, WebLab-Deusto provides a tool called Ex-
perimentServerTester (available in tools/ExperimentServerTester). This is a Python application (requires both Python
2.6 and wxPython, both available for GNU/Linux, Microsoft Windows and Mac OS X) that makes it easy to interact
with the server as WebLab-Deusto would do it. You can use the provided assistant (pressing on “Send command” will
send the command you have written):

Or you can make a script. This could be a full example of the provided API (in addition to all the Python API):

2.7. Tools 83

https://github.com/weblabdeusto/weblabdeusto/tree/master/tools/ExperimentServerTester
http://www.wxpython.org/download.php#stable

WebLab-Deusto Documentation, Release 5.0

connect("127.0.0.1", "10039", "/weblab")
test_me("hello")

start_experiment()
send_file("script.py", "A script file")
send_command("Test Command")
msg_box("Test Message", "test")
dispose()

disconnect()

While this tool is still in an experimental status, it can already help the development of experiments.

2.7.4 VISIR Battle Tester

The VISIR Battle Tester (available in tools/VisirBattleTester is an automated tool to evaluate the performance of
WebLab-Deusto with VISIR. It simulates multiple concurrent students interacting with a VISIR in a WebLab-Deusto
system, testing different measurements and validating that the results are the expected, in certain range.

For example, it may send a command which is a request that it knows that it should return 900, and checks that there
is up to a 20% of error margin:

before = time.time()
response = weblab.send_command(reservation_id, Command(visir_commands.visir_request_
→˓900 % visir_sessionid))
after = time.time()
result = visir_commands.parse_command_response(response)
ar3 = AssertionResult(900.0, 900.0 * 0.2, result)
if DEBUG and ar3.failed:

print "[Failed at 3rd]" + str(ar3)
if not IGNORE_ASSERTIONS:

assertions.append(ar3)
times.append(after - before)

So as to run it, change the credentials and URL in the run.py file and run it.

84 Chapter 2. Users

https://github.com/weblabdeusto/weblabdeusto/tree/master/tools/VisirBattleTester

WebLab-Deusto Documentation, Release 5.0

2.8 Configuration variables

This section covers the available configuration variables, organized by servers. Take a look at Technical description to
identify the different servers described here.

Note: At the time of this writing, not all the variables have been documented. We’re working on this (June 2016).
Take into account that these variablse are the type of variables you’ll find in the .py configuration files. They are not
variables for commands.

Table of Contents

• Configuration variables

– Laboratory Server

* General

– Experiments

* HTTP

– Common configuration

* General

* Admin Notifier

* Sessions

– Core Server

* General

* Scheduling

* Facade

* Database

2.8.1 Laboratory Server

The laboratory server is closer to the experiment server and checks if it is alive, maintains the sessions and acts as a
bridge between the pool of core servers and the experiments.

2.8. Configuration variables 85

WebLab-Deusto Documentation, Release 5.0

General

Prop-
erty

Type De-
fault
value

Description

labora-
tory_session_type

bases-
tring

Mem-
ory

What type of session manager the Core Server will use: Memory or MySQL.

labora-
tory_session_pool_id

bases-
tring

Lab-
ora-
to-
ry-
Server

See “core_session_pool_id” in the core server.

labora-
tory_assigned_experiments

list List of strings representing which experiments are available through this particular
laboratory server. Each string contains something like ‘exp1|ud-fpga|FPGA experi-
ments;fpga:inst@mach’, where exp1|ud-fpga|FPGA experiments is the identifier of the
experiment, and “fpga:inst@mach” is the WebLab Address of the experiment server.

labora-
tory_exclude_checking

list [] List of ids of experiments upon which checks will not be run

2.8.2 Experiments

This section includes the configuration of existing laboratories.

HTTP

The HTTP experiment is a type of unmanaged laboratory which enables you to develop your own laboratory. WebLab-
Deusto will call certain methods in that laboratory, and your laboratory will act taking that into account.

Property Type De-
fault
value

Description

http_experiment_urlbases-
tring

The base URL for the experiment server. Example: ‘http://address/mylab/’ will
perform requests to ‘http://address/mylab/weblab/

http_experiment_usernamebases-
tring

None The username used for performing that request. If not present, it will not use any
credentials (and it will assume that the server is filtering the address by IP address
or so).

http_experiment_passwordbases-
tring

None The password used for performing that request. If not present, it will not use any
credentials.

http_experiment_batchbool False Does the system manage its own scheduling mechanism? If so, users requesting
access will automatically be forwarded, and it is the experiment server the one
who has to manage what to do with them.

http_experiment_apibases-
tring

None The API is calculated automatically. However, you may force a particular API
(such as 0, which is the oldest one).

http_experiment_extensionbases-
tring

None Is it using the standard routing system provided? Or is it using something like
‘.php’ in all the files?

http_experiment_request_formatbases-
tring

json What format should be used for performing the request? JSON directly? Or stan-
dard http form?

86 Chapter 2. Users

mailto:inst@mach
http://address/mylab/
http://address/mylab/weblab/

WebLab-Deusto Documentation, Release 5.0

2.8.3 Common configuration

These variables affect all the servers. For instance, certain servers use a session manager (e.g. the Core server for
users, but also the Laboratory server).

General

These variables are simple variables which are general to the whole project.

Property Type Default
value

Description

debug_mode bool False If True, errors and exceptions are shown instead of generic feedback
(like WebLabInternalServerError)

server_admin bases-
tring

None WebLab-Deusto administrator’s email address for notifications. See
Admin Notifier settings below.

server_hostaddress bases-
tring

Host address of this WebLab-Deusto deployment

propa-
gate_stack_traces_to_client

bool False If True, stacktraces are propagated to the client (useful for debug-
ging).

facade_timeout float 0.5 Seconds that the facade will wait accepting a connection before
checking again for shutdown requests.

Admin Notifier

The Admin notifier is mainly used by the core server for notifying administrators of certain activity such as broken
laboratories.

Property Type Default value Description
mail_notification_enabled bool Enables or Disables mail notifications
mail_server_host bases-

tring
Host to use for sending mail

mail_server_helo bases-
tring

Address to be used on the mail’s HELO

mail_server_use_tls bases-
tring

no Use TLS or not. Values: ‘yes’ or ‘no’

mail_notification_sender bases-
tring

Address of the mail’s sender

mail_notification_subject bases-
tring

[WebLab] CRITICAL ER-
ROR!

(Optional) Subject of the notification
mail

Sessions

The session configuration is mainly used by the Core Server, but also by the Laboratory Server and by certain Experi-
ment Servers.

2.8. Configuration variables 87

WebLab-Deusto Documentation, Release 5.0

Property Type Default
value

Description

ses-
sion_sqlalchemy_engine

bases-
tring

mysql Database engine used for sessions the database. Example: mysql

ses-
sion_sqlalchemy_host

bases-
tring

local-
host

Location of the sessions database server

ses-
sion_sqlalchemy_port

int None Location of the sessions database server

ses-
sion_sqlalchemy_db_name

bases-
tring

We-
bLab-
Ses-
sions

Database name of the sessions database

ses-
sion_sqlalchemy_username

bases-
tring

Username for connecting to the sessions database

ses-
sion_sqlalchemy_password

bases-
tring

Password for connecting to the sessions database

ses-
sion_lock_sqlalchemy_engine

bases-
tring

mysql Database engine used for locking the database. Example: mysql

ses-
sion_lock_sqlalchemy_host

bases-
tring

local-
host

Location of the locking database server

ses-
sion_lock_sqlalchemy_port

int None Location of the locking database server

ses-
sion_lock_sqlalchemy_db_name

bases-
tring

We-
bLab-
Ses-
sions

Database name of the locking database

ses-
sion_lock_sqlalchemy_username

bases-
tring

Username for connecting to the locking database

ses-
sion_lock_sqlalchemy_password

bases-
tring

Password for connecting to the locking database

ses-
sion_manager_default_timeout

int 7200 Maximum time that a session will be stored in a Session Manager. In
seconds.

ses-
sion_memory_gateway_serialize

bool False Sessions can be stored in a database or in memory. If they are stored in
memory, they can be serialized in memory or not, to check the behaviour

2.8.4 Core Server

This configuration is used only by the Core servers. The Core server manages the scheduling, life cycle of the users,
the sessions, and the incoming web services calls. Note that there is other common configuration which affects the
Core server, so also take a look at the Common Configuration in this document.

General

General variables for the Core server: what type of session, should we store students programs, etc.

88 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

Prop-
erty

Type Default
value

Description

core_server_urlbases-
tring

The base URL for this server. For instance, http://your-uni.edu/weblab/

core_universal_identifierbases-
tring

00000000 Unique global ID for this WebLab-Deusto deployment. Used in federated environments,
where multiple nodes register each other and do not want to enter in a loop. You should
generate one (search for online GUID or UUID generators or use the uuid module in
Python).

core_universal_identifier_humanbases-
tring

WARN-
ING;
MIS-
CON-
FIG-
URED
SERVER.
ADD A
UNI-
VER-
SAL
IDENTI-
FIER

Message such as ‘University A’, which identifies which system is using performing
the reservation. The unique identifier above must be unique, but this one only helps
debugging.

core_session_typebases-
tring

Memory What type of session manager the Core Server will use: Memory or MySQL.

core_session_pool_idbases-
tring

User-
Process-
ingServer

A unique identifier of the type of sessions, in order to manage them. For instance, if
there are four servers (A, B, C and D), the load of users can be splitted in two groups:
those being sent to A and B, and those being sent to C and D. A and B can share those
sessions to provide fault tolerance (if A falls down, B can keep working from the same
point A was) using a MySQL session manager, and the same may apply to C and D. The
problem is that if A and B want to delete all the sessions -at the beginning, for example-
, but they don’t want to delete sessions of C and D, then they need a unique identifier
shared for A and B, and another for C and D. In this case, “UserProcessing_A_B” and
“UserProcessing_C_D” would be enough.

core_store_students_programsbool False Whether files submitted by users should be stored or not.
core_store_students_programs_pathbases-

tring
None If files are stored, in which local directory should be stored.

geoip2_city_filepathbases-
tring

GeoLite2-
City.mmdb

If the maxminds city database is downloaded, use it

geoip2_country_filepathbases-
tring

GeoLite2-
Country.mmdb

If the maxminds country database is downloaded, use it

lo-
cal_city

bases-
tring

None Local city (e.g., if deployed in Bilbao, should be Bilbao). This is used so WebLab-
Deusto uses it for resolving local IP addresses

lo-
cal_country

bases-
tring

None Local country, in ISO 3166 format (e.g., if deployed in Spain, should be ES). This is
used so WebLab-Deusto uses it for resolving local IP addresses

ig-
nore_locations

bool False Ignore the locations system (and therefore do not print any error if the files are not
found)

logo_pathbases-
tring

client/images/logo.jpgFile path of the logo.

logo_small_pathbases-
tring

client/images/logo-
mobile.jpg

File path of the small version of the logo.

2.8. Configuration variables 89

http://your-uni.edu/weblab/

WebLab-Deusto Documentation, Release 5.0

Scheduling

This is the configuration variables used by the scheduling backend (called Coordinator). Basically, you can choose
among redis or a SQL based one, and customize the one selected.

Prop-
erty

Type De-
fault
value

Description

core_coordination_implbases-
tring

sqlalchemyWhich scheduling backend will be used. Current implementations: ‘redis’, ‘sqlalchemy’.

core_coordinator_db_hostbases-
tring

lo-
cal-
host

Host of the database server.

core_coordinator_db_portint None Port of the database server.
core_coordinator_db_namebases-

tring
We-
bLab-
Co-
or-
di-
na-
tion

Name of the coordination database.

core_coordinator_db_usernamebases-
tring

Username to access the coordination database.

core_coordinator_db_passwordbases-
tring

Password to access the coordination database.

core_coordinator_db_enginebases-
tring

mysql Driver used for the coordination database. We currently have only tested MySQL, although
it should be possible to use other engines.

core_coordinator_laboratory_serverslist Available laboratory servers. It’s a list of strings, having each string this format:
“lab1:inst@mach;exp1|ud-fpga|FPGA experiments”, for the “lab1” in the instance “inst”
at the machine “mach”, which will handle the experiment instance “exp1” of the experi-
ment type “ud-fpga” of the category “FPGA experiments”. A laboratory can handle many
experiments, and each experiment type may have many experiment instances with unique
identifiers (such as “exp1” of “ud-fpga|FPGA experiments”).

Facade

Here you can customize the general web services consumed by the clients. Stuff like which ports will be used, etc.

Property Type Default value Description
core_facade_server_routebases-

tring
default-route-
to-server

Identifier of the server or groups of servers that will receive re-
quests, for load balancing purposes.

core_facade_bind bases-
tring

Binding address for the main facade at Core server

core_facade_port int Binding address for the main facade at Core Server

Database

The database configuration stores the users, groups, uses, etc.

90 Chapter 2. Users

WebLab-Deusto Documentation, Release 5.0

Property Type Default
value

Description

db_host bases-
tring

localhost Location of the database server

db_port int None Port where the database is listening, if any
db_database bases-

tring
WebLab Name of the main database

db_engine bases-
tring

mysql Engine used. Example: mysql, sqlite

db_echo bool False Display in stdout all the SQL sentences
db_pool_size int 5 Maximum number of spare connections to the

database.
db_max_overflow int 35 Maximum number of connections to the database.
weblab_db_username bases-

tring
weblab WebLab database username

weblab_db_password bases-
tring

WebLab database user password

we-
blab_db_force_engine_creation

bool False Force the creation of an engine each time

2.9 Upgrading

You have installed WebLab-Deusto. However, you notice that there is a super-cool feature in a newer version. And
you want to upgrade your current setup to this version.

There are several things that may change from one version to other:

1. The client code

2. The server code

3. Some new or old parameters changed

4. The database schema

The first two points only require you to download the changes and re-deploy it. The other two will require you to also
modify your WebLab instance. We provide tools for all this.

Table of Contents

• Upgrading

– Upgrading the base system

– Upgrading an existing instance

2.9.1 Upgrading the base system

So as to download the latest version, download the latest changes from the git repository. Basically, go to the directory
where WebLab-Deusto is and do the following:

2.9. Upgrading 91

WebLab-Deusto Documentation, Release 5.0

Go wherever you downloaded it
$ cd /opt/weblabdeusto/
$ git pull

Then, the code changes will be there, but they will still not be deployed. Now you need to deploy both the code, by
running:

Go wherever you downloaded it
$ cd /opt/weblabdeusto/
$ python setup.py install

Warning: Before running the setup.py install process, you may need to delete the directory called build
in the server/src directory. The reason is that sometimes, some old files are left there. Most of the times this
step is not mandatory, but from time to time, it is required.

This will install all the new requirements, will copy everything to the deployment directory. From this point, you may
create new WebLab-Deusto instances using the new deployment, by running:

$ weblab-admin create sample

As already explained in First steps.

2.9.2 Upgrading an existing instance

If you already have a running WebLab-Deusto instance, then you may want to upgrade it. This means changing the
structure of the database, configuration variables and so on.

WebLab-Deusto, through its weblab-admin command, manages this, modifying the database and converting the
old variables. However, this command may fail (there are too many combinations), and if it fails, your system might
end up in an unrecoverable state. For this reason, you are encouraged to make a backup of both the WebLab-Deusto
instance directory and the database (if it is SQLite, it’s inside the directory, but if it is MySQL, it is outside it, and you
might need a command like mysqldump).

Warning: You are encouraged to make backups of your data before proceeding, and even to run the following
command in a copy of the directory using a different database.

So as to use the automatic upgrader, first stop your current instance, and then run the following:

$ weblab-admin upgrade sample

If you have made further changes (such as the location of the virtualenv, or the directory where the deployment is),
you need to reconfigure the paths, by running the following and restart the web server (e.g., Apache):

$ weblab-admin httpd-config-generate sample

Once finished, you will be able to start again your system:

$ weblab-admin start sample

If there is any error, please report it.

92 Chapter 2. Users

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html

CHAPTER 3

Remote laboratory development and management

This section is intended for people who is going to create a new laboratory using the WebLab-Deusto tools.

3.1 Remote laboratory development

Table of Contents

• Remote laboratory development

– Introduction

* Managed laboratories

* Unmanaged laboratories

* Which one should I use?

– Managed laboratories

* Introduction

* Server side

· WebLab-Deusto server (Python)

· Java

· .NET

· C

· C++

· Node.js

· LabVIEW

93

WebLab-Deusto Documentation, Release 5.0

· Python

* Client side

· JavaScript

· What to develop

· JavaScript API

· Java applets

· Flash applets

· Google Web Toolkit

* Tools

– Unmanaged laboratories

* Using weblablib

* HTTP unmanaged laboratories

· Interface specification

· Function 1: Get API version

· Function 2: Test connection

· Function 3: Start

· Function 4: Status

· Function 5: Stop

· Examples

· Flask (with a library)

· Flask (simple)

· PHP (multiple files)

· PHP (single file)

· Deployment

* LabVIEW Remote Panels

* Virtual machines

– Summary

3.1.1 Introduction

This section covers the development of new remote laboratories using WebLab-Deusto. As detailed in Technical
description, WebLab-Deusto provides a set of libraries so experiment developers can create their own remote labora-
tories.

There are two major approaches for using WebLab-Deusto:

1. Managed laboratories

2. Unmanaged laboratories

Which are described below.

94 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Note: This section explains the provided APIs and tools for development. However, you need to read the following
section to register the new laboratory and use it. So you probably need to go from one document to the other during
the development cycle.

Note: If you are familiar with Python, you could go to http://developers.labsland.com/weblablib/ which is a Python
library suitable for web developers using Python and Flask.

Managed laboratories

Managed laboratories are those laboratories developed with the API of WebLab-Deusto. They basically have two
parts:

3.1. Remote laboratory development 95

http://developers.labsland.com/weblablib/

WebLab-Deusto Documentation, Release 5.0

• A client, developed using one of the libraries provided by WebLab-Deusto (see below).

• A server, developed using one of the provided server libraries or using XML-RPC directly (see below).

This way, the client will run on the web browser and will basically display the user interface. Whenever the user
interface requires accessing the equipment, it will use the provided API to submit a command and retrieve a response.
For example, a typical application might perform an action when the user presses a button. This button will submit
a message (command) using the API, and WebLab-Deusto will call a particular method in the server side with that
particular message.

Therefore, managed laboratories count with the following advantages:

• Experiment developer does not manage any type of communications. The client API has a method for submit-
ting a command, which the WebLab-Deusto client will propagate as securely as the system has been configured
(e.g., supporting HTTPS) to the server, which once in the campus side, the server will submit the command to
the particular equipment (regardless where it is deployed in the internal topology of the campus side network).
All commands submitted through WebLab-Deusto will go through pure HTTP, crossing firewalls and proxies.

• All the information is stored in the database by default, so it is possible to perform learning analytics. By
default, administrators and instructors can track what exact commands were submitted by the student. This
process however does not add a relevant latency, since instead of storing each command whenever is sent, it
adds it to a memory queue (which is a fast operation), and other thread is continuosly retrieving information
from the queue and storing it in the database in a batch basis.

WebLab-Deusto supports and provides libraries for multiple programming languages.

96 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Unmanaged laboratories

However, not everybody in the remote laboratory community is comfortable with developing a remote laboratory from
scratch by programming. For this reason, WebLab-Deusto also supports unmanaged laboratories, which are those
where the communication is not sent through WebLab-Deusto, but directly to the final server.

A typical unmanaged environment works as follows: #. The user selects a laboratory in WebLab-Deusto #. When the
user attempts to use a laboratory, WebLab-Deusto contacts the laboratory. Some secret is exchanged between both
WebLab-Deusto and the laboratory, and WebLab-Deusto provides the user with a URL which contains a secret so the
laboratory can identify the user. #. From that point, the user is redirected to that URL and he interacts directly with
the laboratory.

This way, WebLab-Deusto still manages the reservation process, authentication (i.e., who is the user), authorization
(i.e., in what groups are the user), scheduling (i.e., the queue of users) or user tracking (but only when did the user
enter, not what was submitted by the user). However, the final communications are not managed by WebLab-Deusto.

The main advantages of unmanaged laboratories are:

3.1. Remote laboratory development 97

WebLab-Deusto Documentation, Release 5.0

• You can use any web framework in any web framework you already know. There is no restriction on how the
communications have to be managed.

• It supports further protocols not supported by WebLab-Deusto. For example, you might use WebSockets, which
is not natively supported by WebLab-Deusto. But in an unmanaged laboratory, you can use them. Or if you
use Virtual Machines, you can use SSH/VNC/Remote Desktop or whatever protocol you consider necessary for
your laboratory.

• You can use libraries such as http://developers.labsland.com/weblablib/

Which one should I use?

It depends on your background. WebLab-Deusto supports both approaches because none of them is suitable for all
publics:

1. If you are familiar with developing code in Java, .NET, Python or so on, but have little experience with web
development, it might be easier for you to develop a managed laboratory. If you’re not familiar with HTML
+ JavaScript, you might find tutorials on the Internet. Also, if you already know JavaScript and want to have
the laboratory as something isolated in your network (so you do not need to deal with unauthenticated users or
requests, with efficient approaches to know if the user has finished the session or not, etc.), then the managed
approach is better for you. In this case, jump to Managed laboratories.

2. If you are familiar with developing complete web applications (e.g., in web frameworks such as Flask, Django
or other technologies such as Node.js, PHP, ASP.NET or so), or you want to use special advances features
(WebSockets, etc.), you might prefer to deploy the remote laboratory using one of these technologies and be in
charge of the complete stack (e.g., managing who has access, checking when the user disconnected, etc.), so
using the unmanaged approach might be more suitable for you. In this case, jump to Unmanaged laboratories.

In any case, both approaches are compatible in the same WebLab-Deusto server, so you might manage laboratories
developed in each technology.

98 Chapter 3. Remote laboratory development and management

http://developers.labsland.com/weblablib/

WebLab-Deusto Documentation, Release 5.0

So the next step is to start with any of the two approaches:

• Managed laboratories

• Unmanaged laboratories

3.1.2 Managed laboratories

This section describes how to develop experiments using the managed model.

3.1. Remote laboratory development 99

WebLab-Deusto Documentation, Release 5.0

Introduction

As previously defined, in the managed laboratories, all the communications are managed by WebLab-Deusto. This
basically means that, as seen on the following figure, the client code will call a set of methods such as:

// In the client side (JavaScript in this case)
weblab.sendCommand("press button1")

.done(function (response) {
console.log(response);

})
.fail(function (error) {

console.log(error);
});

And WebLab-Deusto guarantees that this string will be forwarded to the proper experiment server. In the experiment
server, there will be a method such as:

// (example in Java)
public String sendCommand(String command) throws WebLabException {

// Manage the command and return the results
if (command.startsWith("press ")) {

String what = command.substring("press ".length);
pressButton(what);
return getStatus();

} else {
return "unknown";

}
}

So as to do this, WebLab-Deusto provides APIs for the client, which wrap the communications submitting the com-
mands to the server side using HTTP (and HTTPS if available), adding the required metadata (such as the session
identifier). This is step 1 in the following figure. Once in the Core server (check the technical description if lost), it
checks if that the session is still available and with an experiment assigned. If so, it submits the command to the Labo-
ratory server in charge of the assigned experiment (there might be different laboratory servers) and stores the command
in the database. This process is faster than it may sound, since it uses memory structures and internal queues so there
is only a single thread using the database for adding the commands submitted. This is step 2 in the figure. Once in
the Laboratory server, it checks to which Experiment server the command should be submitted, and submits it (this is
step 3). If the Experiment Server was developed with one of the libraries for servers, then this gets the message in the
programming language used and passes it to the Experiment server code.

This way, it is entirely up to the experiment developer to choose the proper programming environment for its experi-
ments. Furthermore, developers will select the format of the contents submitted as commands. WebLab-Deusto does
not impose any restriction on this side, so developers may send a simple string such as press button1 that will
later parse, or they may use an XML or JSON format.

For this reason, in the case of the managed model, developers do not need to handle:

• Scheduling (the core server manages it)

• Communications (the libraries manage it)

• User tracking (every command exchanged is already stored in the database)

• Complex deployments (e.g., load balancing: it is configured at WebLab-Deusto level)

So the next step is to develop the client and the server components in the technologies you select. Feel free to jump to:

• Server side

• Client side

100 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Fig. 1: Command sent through the managed model. See the diagram in full size here.

Server side

There are two ways to develop a remote laboratory using the WebLab-Deusto API in the managed model:

• Using Python (which is the programming language used by the rest of the WebLab-Deusto system) as a native
laboratory (therefore managing even the configuration through WebLab-Deusto).

• Running an external process which acts as a XML-RPC server. We provide libraries for doing this automatically,
described below.

In this case, there is no prefered way to develop the laboratories, whatever is easier for the laboratory developer.

All the libraries can be found in the repository, in the experiments/managed/libs/server directory.

Before starting, there is a concept of API version or level for the Experiment server API. Basically, we started with a
very simple API which contained the following methods:

void startExperiment();
void dispose();
String sendCommand(String);
String sendFile(String content, String fileInfo);

Changing this API breaks compatibility with existing laboratories. For this reason, we implemented a method called
get_api, which returns the current API. And at the moment of this writing, there are 3 APIs:

• 1, which is the one presented above.

• 2, which is the one used in the majority of our laboratories, but not in all the libraries at this moment.

• 2_concurrent, which right now is only provided in Python, while it should be easy to change the underlying
XML-RPC services in each library to support it.

In the API v2, the methods we support are the following. We use Java syntax so it is clearer for any reader.

3.1. Remote laboratory development 101

_static/managed_model.png
https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server

WebLab-Deusto Documentation, Release 5.0

/**
* Receives two JSON documents. The first one (clientInitialData) is provided

* by the experiment client. The second one is provided by the core server,

* so it includes secure data that can be trusted. This second one might

* receive:

*
* - request.locale: language used by the client

* - request.username: login of the student

* - request.full_name: full name of the student (at this point, it's still

* the username)

* - request.experiment_id.category_name: category of the experiment

* - request.experiment_id.experiment_name: experiment name

* - priority.queue.slot.length: time in seconds for the particular user

* - priority.queue.slot.start: since when counting this time

* - priority.queue.slot.initialization_in_accounting: whether the

* initialization is counted or not in that time

*
* More parameters will be added in future versions.

*
* The startExperiment returns a JSON document too. It can be simply "{}".

* But it may contain the following information:

*
* - initial_configuration: a String that will be sent to the client in its

* initialization. It may contain for example webcam URLs or similar of

* the particular server.

* - batch: a boolean value stating if the current experiment is batch (and

* therefore the experiment will be stopped just after calling this

* method).

*
* So, examples of return values are:

*
* - {} (normal return)

* - { "initial_configuration": "{\"webcam_url\": \"http://.../\"}" }

* - { "initial_configuration": "(result)", "batch": true }

*
*/
String startExperiment(String clientInitialData, String serverInitialData);

/**
* returning "1", "2", "2_concurrent" and more in the future.

*/
String getApi();

/**
* Report WebLab-Deusto if the current user should be kicked out or not.

* In some laboratories, if certain circumstance happens, the user should not

* be using the laboratory more time. This method provides a mechanism for

* developers to activate this. To this end, this method will be called

* periodically. If such feature is not required, the laboratory should just

* return 0 (stating "don't call me again"). If the lab should be contacted

* often (e.g., every 30 seconds), the laboratory should return that time in

* seconds. So if it returns 5, it will be contacted in 5 seconds

* approximately, and if then it returns 10, it will be contacted in 10

* seconds approximately. Finally, if the user should be kicked out, -1

* should be returned.

*/
int shouldFinish();

(continues on next page)

102 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

/**
* Send a command to the laboratory. You can encode whatever message here:

* either a JSON/XML or a simple string. WebLab-Deusto will not process this,

* it will just store it. Whatever is returned will be also sent to the

* client.

*/
String sendCommand(String message);

/**
* Send a file to the laboratory.

*/
String sendFile(File f, String info);

/**
* Tell the laboratory to clean the resources. Whenever the laboratory

* returns from this method, the laboratory will be assigned to someone else.

* If the laboratory might take long in cleaning resources, it should return

* a JSON stating that. It may also provide some information for the client

* to be displayed after finishing. To do this, it should return a JSON with

* some contents:

*
* - finished: true/false (if finished)

* - data: data to be returned to the client

* - ask_again: true/false (if not finished and want to be called again until

* cleaning resources is finished.

*
* By default, just return "{}" (an empty JSON message).

*/
String dispose();

The Laboratory server can define which is the API of a laboratory. If it is not stated by the Laboratory server, the
system attempts to request the API version. If it fails to provide it, it will assume that it is version 1 (where there
was no such concept, and therefore, no explicit method detailing it). From that point, it will know which version
the Experiment server is running and it will call the methods in one way or other (e.g., providing arguments to the
startExperiment or not, using more methods, etc.).

In the concurrent version of the API, the same exact API is provided but it receives an additional argument at the
beginning identifying the user session. This way, you can make a laboratory that supports 30 concurrent students
accessing, and you can still identify who is who by the session identifier provided. So the methods become the
following (the internals are the same as in the previous code):

/**
* Same as before, but it is told to receive a new user with sessionId.

*/
String startExperiment(String sessionId, String clientInitialData, String
→˓serverInitialData);

/**
* returning "2_concurrent" and more in the future.

*/
String getApi();

/**
* Same as before but referring to a particular user.

*/

(continues on next page)

3.1. Remote laboratory development 103

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

int shouldFinish(String sessionId);

/**
* Same as before but referring to a particular user

*/
String sendCommand(String sessionId, String message);

/**
* Same as before but referring to a particular user

*/
String sendFile(String sessionId, File f, String info);

/**
* Same as before but referring to a particular user

*/
String dispose(String sessionId);

So as to make the development process easier, we provide libraries for different languages. However, some of them are
in different versions (e.g., version 1, or version 2 or version 2_concurrent). If you want to support a different version,
feel free to develop the library yourself and contribute it to our github (Contribute), or simply contact us to develop it
(Contact). All the libraries can be found in the repository, in the experiments/managed/libs/server directory.

The following are available:

• WebLab-Deusto server (Python)

• Java

• .NET

• C

• C++

• Node.js

• LabVIEW

• Python

WebLab-Deusto server (Python)

There are two ways to develop the laboratory in Python. One is using all the WebLab-Deusto toolkit, and another
using a simple script. The second one would be recommended for constrained devices (e.g., Raspberry Pi), while the
first one could be more convenient for regular deployments. This section covers the first one. If you’re interested on
the second one, jump to Python.

In the case of Python, no external library is required, other than WebLab-Deusto itself. A dummy example would be
the following:

import json

from weblab.experiment.experiment import Experiment
import weblab.experiment.level as ExperimentApiLevel

class DummyExperiment(Experiment):

def __init__(self, coord_address, locator, cfg_manager, *args, **kwargs):

(continues on next page)

104 Chapter 3. Remote laboratory development and management

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

super(DummyExperiment,self).__init__(*args, **kwargs)

Keep an instance of the configuration manager
self._cfg_manager = cfg_manager

Retrieve a configuration variable from the configuration file:
self._cfg_manager.get_value("property_name", "default_value")

def do_start_experiment(self, client_initial_data, server_initial_data):
"""A new student is granted access to the laboratory (scheduled,
authenticated, etc.)"""

Data provided by the client
print "Client initial data:", json.loads(client_initial_data)
Data provided by the server (username, time slot...)
print "Server initial data:", json.loads(server_initial_data)

Default response
return "{}"

If you want to provide some initial data (URLs to cameras or so)
return json.dumps({ "initial_configuration" : "this will be batch", "batch"

→˓: False })

In case of batch laboratories, use the following:
return json.dumps({ "initial_configuration" : "this will be batch", "batch"

→˓: True })

def do_get_api(self):
The current Laboratory API is the version 2. Whenever we add new
methods or change the API, it will not affect you if you are
stating that the API that the rest of the system must use with
this experiment is v2.
return ExperimentApiLevel.level_2

def do_dispose(self):
""" The user exited (or the time slot finished). Clean resources. """

print "User left"

return "{}"

def do_send_file_to_device(self, file_content, file_info):
""" A file, encoded in BASE64, has been sent. Do something with it """

return "A response that the client will receive"

def do_send_command_to_device(self, command):
""" A command has been submitted. Do something with it and reply. """

print "Command received:", command

return "Got your command"

def do_should_finish(self):
"""
Should the experiment finish? If the experiment server should be able to

(continues on next page)

3.1. Remote laboratory development 105

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

say "I've finished", it will be asked every few time; if the experiment
is completely interactive (so it's up to the user and the permissions of
the user to say when the session should finish), it will never be asked.

Therefore, this method will return a numeric result, being:
- result > 0: it hasn't finished but ask within result seconds.
- result == 0: completely interactive, don't ask again
- result < 0: it has finished.

"""
return 0

From this point, you can now deploy the experiment, as explained in the following section steps 1 to 4, or to jump to
the client development (Client side).

However, it is worth mentioning that there is other API called the concurrent API, which enables that the Experiment
server manages multiple concurrent users at the same time. For example, imagine that you want that a fixed number
(e.g., 10) students talk each other while using the laboratory. You can change this in the deployment, as it is later
explained in Concurrency. But then, you would not be able to differentiate who is accessing, or send different messages
to each student. For this reason, the concurrent API provides a unique identifier (which is a random number, and is
not maintained across sessions) called session_id. This session_id is passed through all the methods, as seen
below:

from weblab.experiment.concurrent_experiment import ConcurrentExperiment
import weblab.experiment.level as ExperimentApiLevel

class DummyConcurrentExperiment(ConcurrentExperiment):

def __init__(self, coord_address, locator, cfg_manager, *args, **kwargs):
super(DummyConcurrentExperiment,self).__init__(*args, **kwargs)

Keep an instance of the configuration manager
self._cfg_manager = cfg_manager

Retrieve a configuration variable from the configuration file:
self._cfg_manager.get_value("property_name", "default_value")

def do_start_experiment(self, session_id, client_initial_data, server_initial_
→˓data):

Store in a local dictionary that there is a new user defined as
session_id

return "{}"

def do_get_api(self):
return ExperimentApiLevel.level_2_concurrent

def do_dispose(self, session_id):
Remove that particular user from the active users
return "{}"

def do_send_file_to_device(self, session_id, file_content, file_info):
That user (identified by session_id) is sending a file

return "A response that the client will receive"

def do_send_command_to_device(self, session_id, command):

(continues on next page)

106 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

That user (identified by session_id) is sending a command

print "Command received:", command

return "Got your command"

def do_should_finish(self, session_id):
Should that user be kicked out?
return 0

Now yes, you can now deploy the experiment, as explained in the following section steps 1 to 4, or to jump to the
client development (Client side).

Java

The Java library can be found in the experiments/managed/libs/server/java library. It is an Eclipse project, so you
should be able to import it if you are using this IDE. Otherwise, you can use ant to compile it, by running:

$ ant build
$ ant run

The structure of the source code is the following:

+ src
+ es/deusto/weblab/experimentservers
+ exceptions

- (defined exceptions)
- ExperimentServer.java
- Launcher.java
- (Other auxiliar classes)

+ com/example/weblab
- DummyExperimentServerMain.java
- DummyExperimentServer.java

There, the important classes are those available in the package es.deusto. The ones in the com.example can be
removed and replaced by the proper package of your application. They are there as a working example of what the
interface is.

The two important classes are ExperimentServer and Launcher. The former is a class which defines all the
optional methods which can be implemented by the experiment developer (e.g., a method for receiving commands).
The latter is a class that will start a XML-RPC server taking an instance of the class generated by the experiment
developer.

The first thing you must implement is a class which inherits from ExperimentServer. An example of this is the
DummyExperimentServer class, which supports multiple methods such as:

// A new user comes in
public String startExperiment(String clientInitialData, String serverInitialData)
→˓throws WebLabException {

System.out.println("I'm at startExperiment");
System.out.println("The client provided me this data: " + clientInitialData);
System.out.println("The server provided me this data: " + serverInitialData);
return "{}";

}

(continues on next page)

3.1. Remote laboratory development 107

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/java
http://www.eclipse.org/
http://ant.apache.org/

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

// Typical server initial data:
// [java] The server provided me this data:
// {
// "request.locale": "es",
// "request.experiment_id.experiment_name": "dummy",
// "request.experiment_id.category_name": "Dummy experiments",
// "priority.queue.slot.initialization_in_accounting": true,
// "priority.queue.slot.start": "2013-03-27 00:36:08.397675",
// "priority.queue.slot.length": "200",
// "request.username": "admin"
// }

// A user leaves (or is kicked out)
public String dispose() {

System.out.println("I'm at dispose");
return "ok";

}

public String sendFile(File file, String fileInfo) throws WebLabException {
System.out.println("I'm at send_program: " + file.getAbsolutePath() + ";

→˓fileInfo: " + fileInfo);
return "ok";

}

public String sendCommand(String command) throws WebLabException {
System.out.println("I'm at send_command: " + command);
return "ok";

}

Those methods should parse the command send by the client and do the required actions (such as interact with certain
equipment and return some response).

Once you have implemented this class, you can use the Launcher as:

public class DummyExperimentServerMain {
public static void main(String [] args) throws Exception{

int port = 10039;
IExperimentServer experimentServer = new DummyExperimentServer();
Launcher launcher = new Launcher(port, experimentServer);
launcher.start();

}
}

This way, you willhave the experiment running on port 10039 in this case. Once you have the server running, you
will need to register it in WebLab-Deusto.

From this point, you can now deploy the experiment, as explained in the following section steps 1 to 4, or to jump to
the client development (Client side).

.NET

The .NET library is available here (so you have it in your WebLab-Deusto installation in experiments/managed/
libs/server/dotnet):

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/dotnet

108 Chapter 3. Remote laboratory development and management

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/dotnet

WebLab-Deusto Documentation, Release 5.0

At the time of this writing, it supports API v1. You can fill the DummyExperimentServer.cs example that uses
the library:

using System;
using System.IO;

class SampleExperimentServer : WebLabDeusto.ExperimentServer {
public string SendFile(byte [] file, string fileInfo){

int length = file.Length;
Console.WriteLine("File received: {0}", length);
return "File received " + length;

}

public string SendCommand(string command){
Console.WriteLine("Command received: {0}", command);
return "Command received: " + command;

}

public void StartExperiment(){
Console.WriteLine("Experiment started");

}

public void Dispose(){
Console.WriteLine("Experiment disposed");

}
}

class Tester{
public static void Main(){

WebLabDeusto.Runner runner = new WebLabDeusto.Runner(
new SampleExperimentServer(),
5678,
"weblab"

);
runner.Start();
Console.WriteLine("Press to shutdown");
Console.ReadLine();

}
}

From this point, you can now deploy the experiment, as explained in the following section steps 1 to 4, or to jump to
the client development (Client side).

C

The C library is available here (so you have it in your WebLab-Deusto installation in experiments/managed/
libs/server/c):

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/c

At the time of this writing, it supports API v2. You can fill the dummy_experiment_server.c example that uses
the library:

#include "weblabdeusto_experiment_server.h"

char * start_experiment(){

(continues on next page)

3.1. Remote laboratory development 109

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/c

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

return "{'initial_configuration' : {}, 'batch' : false}";
}

char * send_file(char * encoded_file, char * fileinfo){
return "ok";

}

char * send_command(char * command){
return "ok";

}

char * dispose(){
return "ok";

}

int main(int const argc, const char ** const argv) {

struct ExperimentServer handlers;
handlers.start_experiment = start_experiment;
handlers.send_command = send_command;
handlers.send_file = send_file;
handlers.dispose = dispose;

/* For optional methods, you can use the default
implementation by pointing to default_<handler-name> */

handlers.is_up_and_running = default_is_up_and_running;
handlers.should_finish = default_should_finish;

launch(12345, handlers);

return 0;
}

From this point, you can now deploy the experiment, as explained in the following section steps 1 to 4, or to jump to
the client development (Client side).

C++

The C++ library is available here (so you have it in your WebLab-Deusto installation in experiments/managed/
libs/server/cpp):

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/cpp

At the time of this writing, it supports API v1. You can fill the dummy_experiment_server.cpp example that
uses the library:

#include "weblabdeusto_experiment_server.hpp"

#include <iostream>

class DummyExperimentServer : public ExperimentServer
{
public:

virtual std::string onStartExperiment()
(continues on next page)

110 Chapter 3. Remote laboratory development and management

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/cpp

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

{
return "{'initial_configuration' : {}, 'batch' : false}";

}

virtual std::string onSendFile(std::string const & encoded_file, std::string
→˓const & fileinfo)

{
return "ok";

}

virtual std::string onSendCommand(std::string const & command)
{

return "ok";
}

virtual std::string onDispose()
{

return "ok";
}

};

int main(int argc, char const * argv[])
{

DummyExperimentServer testServer;
testServer.launch(12345, "rpc_log.txt");

}

From this point, you can now deploy the experiment, as explained in the following section steps 1 to 4, or to jump to
the client development (Client side).

Node.js

The Node.js library is available here (so you have it in your WebLab-Deusto installation in experiments/
managed/libs/server/nodejs):

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/nodejs

At the time of this writing, it supports API v2. You can fill the dummyexperimentserver.js example that uses
the library:

experimentserver = require("./node.weblab.experimentserver");

DummyExperimentServer = new function() {

this.test_me = function(message) {
console.log("On test_me");
return message;

}

// Is the experiment up and running?
// The scheduling system will ensure that the experiment will not be
// assigned to other student while this method is called. The result
// is an array of integer + String, where the first argument is:
// - result >= 0: "the experiment is OK; please check again

(continues on next page)

3.1. Remote laboratory development 111

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/nodejs

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

// within $result seconds"
// - result == 0: the experiment is OK and I can't perform a proper
// estimation
// - result == -1: "the experiment is broken"
// And the second (String) argument is the message detailing while
// it failed.
this.is_up_and_running = function() {

console.log("On is_up_and_running");
return [600, ""];

}

this.start_experiment = function(client_initial_data, server_initial_data) {
// Start experiment can return a JSON string specifying the initial

→˓configuration.
// The "config" object can contain anything. It will be delivered as-is to

→˓the client.
var config = {};
var initial_config = { "initial_configuration" : config, "batch" : false };
return JSON.stringify(initial_config);

}

this.send_file = function (content, file_info) {
console.log("On send_file");
return "ok";

}

this.send_command = function (command_string) {
console.log("On send_command");
return "ok";

}

// Returns a numeric result, defined as follows:
// result > 0: it hasn't finished but ask within result seconds.
// result == 0: completely interactive, don't ask again
// result < 0: it has finished.
this.should_finish = function() {

return 0;
}

// May optionally return data as a string, which will often be json-encoded.
this.dispose = function () {

console.log("On dispose");
return "ok";

}
}

experimentserver.launch(12345, DummyExperimentServer);

From this point, you can now deploy the experiment, as explained in the following section steps 1 to 4, or to jump to
the client development (Client side).

LabVIEW

112 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Note: This is the LabVIEW managed library. It does not support using Remote panels or so on. It only supports that
you serialize the messages and write your own client in JavaScript using it.

The LabVIEW library is available here (so you have it in your WebLab-Deusto installation in experiments/
managed/libs/server/labview):

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/labview

At the time of this writing, it supports API v1. You can fill the DummyExperimentServer.vi example that uses
the library.

From this point, you can now deploy the experiment, as explained in the following section steps 1 to 4, or to jump to
the client development (Client side).

Python

There are two ways to develop the laboratory in Python. One is using all the WebLab-Deusto toolkit, and another
using a simple script. The second one would be recommended for constrained devices (e.g., Raspberry Pi), while the
first one could be more convenient for regular deployments. This section covers the second one. If you’re interested
on the first one, jump to WebLab-Deusto server (Python).

The Python library can be found in the experiments/managed/libs/server/python. It does not rely on any external
library, since Python comes with an XML-RPC server included. You will find two modules:

• weblab_server.py, which includes the ExperimentServer and the Launcher.

• sample.py, which includes an example of how to use the ExperimentServer code, and how to run it
with the Launcher.

Basically, you have to create a class which inherits from ExperimentServer and implements a subset of the
following methods (none of these are required since they are already implemented in the parent class):

from weblab_server import ExperimentServer, Launcher

class DummyExperimentServer(ExperimentServer):

def start_experiment(self, client_initial_data, server_initial_data):
print "start_experiment", client_initial_data, server_initial_data
return "{}"

def get_api(self):
return "2"

def send_file(self, content, file_info):
print "send_file", file_info
return "ok"

def send_command(self, command_string):
print "send_command", command_string
return "ok"

def dispose(self):
print "dispose"
return "{}"

def should_finish(self):
return 0

3.1. Remote laboratory development 113

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/labview
https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/server/python

WebLab-Deusto Documentation, Release 5.0

Then, you only need to create a Launcher with a port, and start it:

launcher = Launcher(12345, DummyExperimentServer())
launcher.start()

From this point, you can now deploy the experiment, as explained in the following section steps 1 to 4, or to jump to
the client development (Client side).

Client side

The client code is focused on two tasks:

• Providing the user interface

• Submitting commands to the Experiment server and managing the responses

While WebLab-Deusto supports some web libraries, it is highly recommended to use the JavaScript library (as opposed
to Flash or Java applets). Those laboratories developed on top of it will be available for mobile devices, and the number
of conflicts in different platforms will be highly decreased, since they will not need any plug-in installed.

In the following sections describe how to use each of the provided APIs. Jump to the technology you are more
comfortable with:

• JavaScript

• Flash applets

• Java applets

• Google Web Toolkit

JavaScript

The recommended programming language for managed laboratories is JavaScript:

• It is easy. You simply develop an HTML file without any restriction. You include a JavaScript that WebLab
provides to interface with the server.

• Does not have any dependency, other than a JavaScript script file and jQuery.

• Can easily make use of any kind of JavaScript library or framework.

• Possible to develop and test the experiments offline, without deploying a WebLab first. You can just open the
HTML file in a browser.

What to develop

In order to create a new experiment, essentially you need:

• An experiment server

• An experiment client

This section is dedicated to the latter (an experiment client). An experiment client provides the user interface and
client-side logic that your particular experiment requires. It communicates with WebLab and the experiment server
through a very simple API.

When you create a WebLab-Deusto environment, it creates a pub directory. Whatever you put on this directory is
available in http://localhost/weblab/web/pub/ . You can put HTML/JS/CSS files there. The most basic version of your
first JavaScript lab will look like this:

114 Chapter 3. Remote laboratory development and management

http://localhost/weblab/web/pub/

WebLab-Deusto Documentation, Release 5.0

<html>
<head>
<script src="https://code.jquery.com/jquery-1.11.3.min.js"></script>
<script src="../static/weblabjs/weblab.v1.js"></script>

</head>
<body>
<p>Hello world</p>

</body>
</html>

Make sure that the weblab.v1.js file is properly configured. On a typical environment, it is available in http://localhost/
weblab/web/static/weblabjs/weblab.v1.js, so one file called http://localhost/weblab/web/pub/mylab.html will refer to it
as ../static/weblabjs/weblab.v1.js, but if you create the file in a different directory (e.g., in a directory
mylab in the pub directory), then you need more ../.

This HTML that you have just created is meant to be your experiment’s interface. It will appear within WebLab-
Deusto as an iframe. If we continue with the aforementioned example, you might want to add, for instance, a webcam
feed to your HTML, and maybe some JavaScript button. Because it is just standard HTML, you can use any library or
framework you wish to make your work easier.

Once you draw buttons or things, you only need to interact with the expeirment server, by sending and receiving
commands. This is done through the JavaScript API, which will be explained next.

JavaScript API

The WebLab API is relatively simple. The basic API provides these base functions, which is all you really need:

• Sending a command.

• Sending a file.

• Receiving an experiment-starts notification.

• Receiving an experiment-ends notification.

• Forcing the experiment to end early.

For JavaScript, this API can be found in the following place /weblab/web/static/weblabjs/weblab.v1.js

The API follows:

//! Sends a command to the experiment server.
//!
//! @param text Text of the command.
//! @returns a jQuery.Deferred object. You might use it to register callbacks, if
→˓desired.
//! Takes a single string as argument.
//!
weblab.sendCommand(text)

.done(function(message) {
// ...

})
.fail(function(error) {

// ...
})

//! Sends a file to the experiment server.
//!

(continues on next page)

3.1. Remote laboratory development 115

http://localhost/weblab/web/static/weblabjs/weblab.v1.js
http://localhost/weblab/web/static/weblabjs/weblab.v1.js
http://localhost/weblab/web/pub/mylab.html
https://github.com/weblabdeusto/weblabdeusto/blob/master/server/src/weblab/core/static/weblabjs/weblab.v1.js

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

//! @param file An <input type="file"> element (the result of a document.
→˓getElementById or $("#fileinput"))
//! @param fileInfo A string describing the file (e.g., a file name or whatever).
//! @returns a jQuery.Deferred object. You might use it to register callbacks, if
→˓desired.
//! Takes a single string as argument.
//!
weblab.sendFile(file, fileInfo)

.done(function(message) {
// ...

})
.fail(function(error) {

// ...
})

//! Sets the callback that will be invoked when the experiment finishes. Generally,
//! an experiment finishes when it runs out of allocated time, but it may also
//! be finished explicitly by the user or the experiment code, or by errors and
//! and disconnections.
//!
weblab.onFinish(function() {

// Do something when the user finishes
});

//! Sets the startInteractionCallback. This is the callback that will be invoked
//! after the Weblab experiment is successfully reserved, and the user can start
//! interacting with the experiment.
weblab.onStart(function (time, initialConfig) {

// Work with the initialConfig (provided by your experiment server) and the
// remaining time (you're responsible of keep track of it once received)

});

Using the API is easy. Once the script has been included, you can simply call:

weblab.sendCommand("LIGHTBULB ON")
.done(function(response) {

console.log("Light turned on successfully");
})

.fail(function(response) {
console.error("Light failed to turn on");

});

Note that as you can see above, there are some functions that start with “dbg”. Those are for development purposes.
Sometimes, for instance, it is convenient to be able to run your HTML interface stand-alone. In order for the exper-
iment to behave in a way that more closely resembles in its intended way, you can use these to simulate command
responses from the server and the like.

Note: If you want to start the experiment from your JavaScript code, you may call weblab.
startReservation();

After reading this, keep either reading in this document about tools (Tools) or summary (Summary), or jump to the
deployment section (Remote laboratory deployment; in particular JavaScript if you’ve done the previous steps in that
document) or to the sharing section (Remote laboratory sharing).

116 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Java applets

You can develop the client side using Java Applets. They will not work in tablets (iPad, Android) neither in mobile
phones, and many web browsers nowadays do not support Java applets. For this reason, it is recommended to avoid it
and rely on JavaScript or Google Web Toolkit (see below).

However, if you are going to reuse code or you need to use Java Applets for other reasons, WebLab-Deusto supports
it. If you go to experiments/managed/libs/client, you will find the Java applets source code. It is an Eclipse project, so
you should be able to import it if you are using this IDE. Otherwise, you can use ant to compile it, by running:

$ ant package

The package hierarchy is the following:

+ es.deusto.weblab.client.experiment.plugins
+ es.deusto.weblab.javadummy
+ commands

- PulseCommand
- JavaDummyApplet

+ java
- WebLabApplet
- ICommandCallback
- ResponseCommand
- ConfigurationManager
- BoardController
- Command

The java package is the library itself, used by WebLab-Deusto. The es.deusto.weblab.javadummy package
is just an example of a user interface built using this library. You may remove it and use your own package, even
outside (e.g., edu.myuniversity.mylab). However, you must include the java package.

The first step is to make a class which inherits from WebLabApplet (view code). In the example, this class is
JavaDummyApplet (view applet code). This new class is the one which will be instanciated by WebLab-Deusto.
It will be instanciated whenever the user selects the laboratory, before reserving it. Then, there are three methods that
should be implemented by this class:

public void startInteraction() {
// When this method is called, student has access to
// the remote equipment (he has been assigned). You
// can show a cool user interface for your remote
// laboratory and call the sendCommand methods (later
// explained).

}

public void setTime(int time) {
// This method is called to inform you how many seconds
// the user will be using this laboratory. You should
// print it somewhere and maintain a custom counter.

}

public void end() {
// When this method is called, the user has stated that
// he is not using the laboratory anymore, or the system
// has kicked him out (e.g., because his slot finished).

}

From this point, the client knows when the user interfaces should be loaded. So as to interact with the Ex-
periment server, the WebLabApplet provides a method which gives access to the BoardController. The

3.1. Remote laboratory development 117

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/client/java
http://www.eclipse.org/
http://ant.apache.org/
https://github.com/weblabdeusto/weblabdeusto/blob/master/experiments/managed/libs/client/java/src/es/deusto/weblab/client/experiment/plugins/java/WebLabApplet.java
https://github.com/weblabdeusto/weblabdeusto/blob/master/experiments/managed/libs/client/java/src/es/deusto/weblab/client/experiment/plugins/es/deusto/weblab/javadummy/JavaDummyApplet.java

WebLab-Deusto Documentation, Release 5.0

BoardController provides a set of methods for submitting commands.

// From the class which inherits from JavaDummyApplet:
MyCommandCallback callback = new MyCommandCallback();

// Send a message to the Experiment server, and provide a callback
// which will be called when the method comes back.
this.getBoardController().sendCommand("turn switch on", callback);

The callback itself can be defined as follows:

// Somewhere else
public class MyCommandCallback inherits ICommandCallback {

public void onSuccess(ResponseCommand response) {
String responseText = response.getCommandString();
// Do something with the message returned from the
// Experiment server.

}

public void onFailure(String message) {
// Something failed in the server side or in the
// communications. Do something with the error.

}
}

Additionally, the WebLabApplet class provides other methods, such as:

// Call this if you want to terminate the current session
this.getBoardController().onClean();

// Retrieve String properties from the configuration.js file
this.getConfigurationManager().getProperty("my.property", "default value");

// Retrieve int properties from the configuration.js file
this.getConfigurationManager().getIntProperty("my.property");

After reading this, keep either reading in this document about tools (Tools) or summary (Summary), or jump to the
deployment section (Remote laboratory deployment; in particular Java applets if you’ve done the previous steps in
that document) or to the sharing section (Remote laboratory sharing).

Flash applets

We provide a .fla project in experiments/managed/libs/client/flash to see a simple sample of !WebLab
accessed from Adobe Flash, as well as a .as file with all the glue code that the experiment developer might use. You
can see it in github.

In order to create a new experiment using WeblabFlash, weblab.util.WeblabFlash must be imported.

Done this, it is possible to access the singleton instance of WeblabFlash through its static method
getInstance().

//! Retrieves a reference to the only instance of WeblabFlash.
//!
public static function getInstance() : WeblabFlash {

// ...
}

118 Chapter 3. Remote laboratory development and management

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/managed/libs/client/flash

WebLab-Deusto Documentation, Release 5.0

After getting a reference to this instance the programmer should register the weblab callbacks. This is done through the
registerCallbacks method. The callback functions to call whenever events take place are passed to registerCallbacks
as parameters. If being notified of a certain event is not required, it is possible to pass null for it instead. Events are,
in order: onSetTime, onStartInteraction, onEnd, onSecondEllapsed. This last one is null by default
and hence may not be passed at all.

//! Registers the JS callbacks setTime, startInteraction and end, so that
//! the appropiate user-specified delegate is automatically called when appropiate.
//! Optionally registers a seconds timer.
//!
//! @param setTime Function called to set the time.
//! @param startInteraction Function called to start interacting with the user.
//! @param end Function called when the experiment ends.
//! @param onSecondEllapsed Function called every second.
public function registerCallbacks(setTime : Function, startInteraction : Function,
→˓end : Function, onSecondEllapsed : Function = null) : void{

//...
}

Anyway, the developer can ask for the state at any moment. An experiment may be found in one of three different
states:

• WeblabFlash.STATE_WAITING: When weblab is yet to call startInteraction.

• WeblabFlash.STATE_INTERACTING: When startInteraction has been called and therefore the experiment
has started, and is not done yet.

• WeblabFlash.STATE_FINISHED: When weblab has called onEnd() or when onClean() has been
called locally.

Current state may be obtained through the getcurrentState() method.

The method sendCommand is used to send commands to the server. It takes a string with the command as first
parameter plus two callback functions. First of those will be called in case the command succeeds and the other one
in case it fails. Both callbacks are passed a message string when called.

//! Sends a command to the server. Its response will be received asynchroneously
→˓through
//! two alternative callbacks.
//!
//! @param command_str The command string.
//! @param onSuccess Function to call if the command succeeds. Should take the
→˓response string
//! as a parameter.
//! @param onError Function to call if the command fails. Should take the response
→˓string
//! as a paramter.
public function sendCommand(command_str : String, onSuccess : Function, onError :
→˓Function) {

//...
}

The time of an experiment is limited. WeblabFlash internally keeps a timer. This timer is initialized to the value
passed by weblab through its setTime() call and starts decreasing once interaction starts. When zero is reached,
onClean() is automatically called and the experiment is considered to be finished. onClean() may also be called
explicitally before the timer reaches zero. Moreover, weblab may call onEnd() at any time to finish the experiment.
Whenever this happens, the programmer is responsible to clean all resources in use (such as timers).

In order to retrieve the global configuration values, stored in the configuration.xml file in the client side, the developer
may call these methods:

3.1. Remote laboratory development 119

WebLab-Deusto Documentation, Release 5.0

//! Retrieves a property as a string.
//!
//! @param prop The name of the property.
//! @param def The default value to return if the property is not found.
public function getPropertyDef(prop : String, def : String):String {

// ...
}

//! Retrieves a property as a string.
//!
//! @param prop The name of the property.
public function getProperty(prop : String):String {

// ...
}

//! Retrieves an integer property.
//!
//! @param prop The name of the property.
//! @param def The default value to return if the property is not found.
public function getIntPropertyDef(prop : String, def : int):int {

// ...
}

//! Retrieves an integer property.
//!
//! @param prop The name of the property.
public function getIntProperty(prop : String):int {

// ...
}

After reading this, keep either reading in this document about tools (Tools) or summary (Summary), or jump to the
deployment section (Remote laboratory deployment; in particular Flash if you’ve done the previous steps in that
document) or to the sharing section (Remote laboratory sharing).

Google Web Toolkit

Google Web Toolkit (GWT) used to be the technology used by WebLab-Deusto in all the remote laboratories. Nowa-
days, it is still used in certain legacy laboratories and systems.

How to develop the lab

The source code is in client/src. The main package is es.deusto.weblab.client, and inside this, all the
laboatories are in the experiments package (see here). You can check any, but the binary one is one of the simplest
ones. As you can see there, you have to create a class which inherits from IExperimentCreatorFactory. We’ll
go to this one later. Then you see a package called ui. It contains both the class inheriting from ExperimentBase
and the different user interfaces.

First, let’s see the class inheriting from ExperimentBase. In this case, it is called BinaryExperiment. The
ExperimentBase class is the one from which all the remote laboratories inherit. It contains many methods, most of
them optinally implemented by the experiment class. The methods are the following:

/**
* User selected this experiment. It can start showing the UI. It can

* load the VM used (Adobe Flash, Java VM, Silverlight/Moonlight, etc.),

* or define requirements of the (i.e. require 2 files, etc.). It should

* also show options to gather information that will be sent to the

(continues on next page)

120 Chapter 3. Remote laboratory development and management

http://www.gwtproject.org/
https://github.com/weblabdeusto/weblabdeusto/tree/master/client/src/es/deusto/weblab/client/experiments
https://github.com/weblabdeusto/weblabdeusto/blob/master/client/src/es/deusto/weblab/client/experiments/binary/BinaryCreatorFactory.java
https://github.com/weblabdeusto/weblabdeusto/blob/master/client/src/es/deusto/weblab/client/lab/experiments/ExperimentBase.java

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

* initialization method of the experiment server, that later will be

* retrieved through the {@link #getInitialData()} method.

*/
public void initialize(){}

/**
* A user, who performed the reservation outside the regular client (in

* a LMS or a federated environment) is going to start using this

* experiment. Basically it is like the {@link #initialize()} method,

* except for that it should be very fast, and take into account that no

* configuration can be provided (since the reservation has already been

* done).

*/
public void initializeReserved(){

initialize();
}

/**
* Retrieves information sent to the experiment when reserving the

* experiment. It might have been collected in the UI of the

* {@link #initialize()} method.

*/
public JSONValue getInitialData(){

return null;
}

/**
* User is in a queue. Thetype filter text typical behavior will be to hide the UI
→˓shown

* in the {@link #initialize()} method.

*/
public void queued(){}

/**
* User grabs the control of the experiment (in the server side, the

* experiment is already reserved for the user).

*
* @param time Seconds remaining. This time is the maximum permission time.

* @param initialConfiguration Data sent by the experiment server in the

* initialization method.

*/
public void start(int time, String initialConfiguration){}

/**
* User experiment session finished. The experiment should clean

* its resources, or notify the user that it has finished. It may still

* wait for the {@link #postEnd(String)} method to be called so as to

* receive the information sent by the experiment when disposing

* resources.

*/
public void end(){}

Therefore, it is up to the Experiment client to do something when these methods are called. Most typically, de-
velopers will implement the start method and the end method. Additionally, all the classes inheriting from
ExperimentBase also inherit the following attributes:

3.1. Remote laboratory development 121

WebLab-Deusto Documentation, Release 5.0

protected final IBoardBaseController boardController;
protected final IConfigurationRetriever configurationRetriever;
protected static final IWebLabI18N i18n = GWT.create(IWebLabI18N.class);

The first one allows developers to interact with the Experiment Server, as documented here, but the most relevant are
the following:

////////////////////////////////////
//
// General information
//

/**
* Is the user accessing through facebook?

*/
public boolean isFacebook();

/**
* What is the session id of the user? It is useful when using other type of
→˓communications, such

* as iframes in the LabVIEW experiment.

*/
public SessionID getSessionId();

////////////////////////////////////
//
// Sending commands
//

/**
* Send a string command, don't care about the result

*/
public void sendCommand(String command);

/**
* Send a string command, notify me with the result

*/
public void sendCommand(String command, IResponseCommandCallback callback);

////////////////////////////////////
//
// Cleaning
//

/**
* Clean the experiment widgets and move to the list of experiments

*/
public void clean();

/**
* Finish the experiment.

*/
public void finish();

So basically, what you do when implementing an experiment is to inherit from ExperimentBase, override the
start method to be notified when the laboratory has been assigned, and then start showing the user interface and
interacting with the server through commands. In the end method, you usually clean up the remaining resources (e.g.,

122 Chapter 3. Remote laboratory development and management

https://github.com/weblabdeusto/weblabdeusto/blob/master/client/src/es/deusto/weblab/client/lab/experiments/IBoardBaseController.java

WebLab-Deusto Documentation, Release 5.0

stop camera streams, cancel timers, etc.).

However, there are some common operations, such as putting a panel in the screen, or cleaning up the resources. For
this reason, there is a utility class which inherits from ExperimentBase called UIExperimentBase, which provides
the following extra operations:

protected void putWidget(Widget widget);

protected void addDisposableWidgets(IWlDisposableWidget widget);

So you don’t need to implement the end method, and simply use these methods to add the resources to be cleaned.
In the binary experiment, you can see that BinaryExperiment (see code) inherits from this class. In that class,
you may see that it simply calls to the putWidget method, providing the panels implemented in that laboratory. For
instance, you can see the user interface in XML, and the attached Java code which manages the event handlers and
calls the sendCommand method in the processSwitch method to interact with the laboratory.

Finally, going back to the class which inherits from IExperimentCreatorFactory, it will have two methods,
and you can copy and paste code as most of them are very similar:

1. getCodeName, which returns a unique code for that laboratory, and will later be used in the deployment.

2. createExperimentCreator, which creates an ExperimentCreator class where you define the sup-
port in mobile phones (so later in mobile phones the user interface will show a different color), and where
internally it will create the user interface. Note that it uses GWT.runAsync to define that this code will not
be compiled in the same JavaScript and it will be loaded only once the user has clicked on this laboratory. The
ExperimentCreator has other method called createMobile, used if you want to pass an alternative
user interface for mobile devices, as done in the logic laboratory.

@Override
public void createWeb(final IBoardBaseController boardController, final
→˓IExperimentLoadedCallback callback) {

GWT.runAsync(new RunAsyncCallback() {
@Override
public void onSuccess() {

callback.onExperimentLoaded(new BinaryExperiment(
configurationRetriever,
boardController

));
}

@Override
public void onFailure(Throwable e){

callback.onFailure(e);
}

});
}

After reading this, keep either reading in this document about tools (Tools) or summary (Summary), or jump to the
deployment section (Remote laboratory deployment; in particular Configuring the client in a managed laboratory) or
to the sharing section (Remote laboratory sharing).

Tools

The Experiment Server Tester helps you in the process of writing the server code, by being able to test it easily with
a graphic tool, and even create your own scripts to verify that it works as expected. Refer to that documentation for
using it.

3.1. Remote laboratory development 123

https://github.com/weblabdeusto/weblabdeusto/blob/master/client/src/es/deusto/weblab/client/lab/experiments/UIExperimentBase.java
https://github.com/weblabdeusto/weblabdeusto/blob/master/client/src/es/deusto/weblab/client/experiments/binary/ui/BinaryExperiment.java
https://github.com/weblabdeusto/weblabdeusto/blob/master/client/src/es/deusto/weblab/client/experiments/binary/ui/
https://github.com/weblabdeusto/weblabdeusto/blob/master/client/src/es/deusto/weblab/client/experiments/binary/ui/InteractivePanel.ui.xml
https://github.com/weblabdeusto/weblabdeusto/blob/master/client/src/es/deusto/weblab/client/experiments/binary/ui/InteractivePanel.java
https://github.com/weblabdeusto/weblabdeusto/blob/master/client/src/es/deusto/weblab/client/experiments/logic/LogicCreatorFactory.java

WebLab-Deusto Documentation, Release 5.0

3.1.3 Unmanaged laboratories

The unmanaged approach is just a different model for developing remote laboratories. At the time of this writing,
there are mainly three types of unmanaged laboratories:

• Using weblablib (recommended)

• HTTP unmanaged laboratories (recommended)

• LabVIEW Remote Panels (experimental)

• Virtual machines (limited)

Using weblablib

weblablib is a Python library which enables you to develop unmanaged laboratories easily if you have certain Python
knowledge.

So as to put a simple example:

Install using "pip install weblablib"
weblab = WebLab(app)

@weblab.initial_url
def initial_url():

return url_for("index")

@weblab.on_dispose
def stop():

print("Cleaning code...")

@app.route("/")
@requires_active
def index():

return "Hello {}".format(weblab_user.username)

124 Chapter 3. Remote laboratory development and management

http://developers.labsland.com/weblablib/

WebLab-Deusto Documentation, Release 5.0

HTTP unmanaged laboratories

The HTTP unmanaged laboratories target that you can develop laboratories in your preferred web technology. It is by
far the most flexible approach, and the most powerful, but also the one that requires developers to be in charge of more
tasks.

The basis is that developers implement a interface (detaled in Interface specification) that WebLab-Deusto will use as
a client to contact your server for five tasks:

1. Notifying that a new user comes. Your server does not need to control the queue of users or user authentication:
WebLab-Deusto is still charge of that, so it will notify you only whenever a valid user has a valid reservation
and must be able to access. WebLab-Deusto will tell you for how long, what’s the username, and some more
data. You will have to generate a URL that should include a private session or token that you generate so that
anyone going to that website will be able to use the laboratory.

2. Requesting if the user is still there. A user might be assigned 10 minutes, but he might leave after 30 seconds.
If this happens, the laboratory might be assigned to that user still for 9 minutes more, potentially with people in
the queue. You are responsible of checking whether the user has left or not.

3. Notifying that a user must finish. When WebLab-Deusto establishes it (because the time is over, an administrator
kicked the user or similar), the laboratory must be able to make sure that the user is not valid anymore. You are
responsible of making sure that the user can’t do anything else after this happens, and that he is redirected to a
URL provided by WebLab-Deusto in the beginning.

4. Providing the API level. The HTTP unmanaged laboratories API has different versions. Knowing what version
is running on your server lets WebLab-Deusto contact using more or less parameters. So, as long as you report
what API version you’re running, you will be fine (and WebLab-Deusto will use that API version to contact you,
instead of a newer version with more arguments).

5. Providing a test service. The HTTP unmanaged laboratories rely on a set of credentials to verify that it is
WebLab-Deusto the one contacting your server to the main methods described above. So as to be able to
automatically check problems in advance, you must provide a test method that will help us tell the administrator
what is going wrong.

So, your server will be serving two different web applications: one for WebLab-Deusto (which you can even limit by
IP address or listen on a different port if you prefer), and one for the final users.

Interface specification

This section explains in detail each of the five functions explained above. You might see also examples in the section
examples.

All the functions called from WebLab-Deusto provide a shared secret, which is essentially a username and
password in HTTP Basic format. As explained in Unmanaged server, there are two configuration variables
(http_experiment_username and http_experiment_password) that must be configured by the admin-
istrator. These two variables should never be sent to the user. But all the methods described below include the regular
HTTP header such as:

Authorization: Basic d2VibGFiOnBhc3N3b3Jk

For “weblab” and password “password” (which is “weblab:password” in base64). You are responsible of checking
this in all the methods to ensure that nobody else from the Internet (if this API is publicly exposed) can access this
information.

Additionally, there are two ways to call the functions: as a REST service, or as a set of files with extensions. The
default version uses a regular REST service where the URLs will be something like the following:

3.1. Remote laboratory development 125

WebLab-Deusto Documentation, Release 5.0

GET /weblab/sessions/api
GET /weblab/sessions/test
POST /weblab/sessions/ (with contents in JSON)
GET /weblab/sessions/ace76a23-5ccc-45eb-a03c-54dd67b016a5/status
POST /weblab/sessions/ace76a23-5ccc-45eb-a03c-54dd67b016a5 (with contents in JSON)

If you are using a routing engine like you do in most modern web frameworks, this should be easy to manage. However,
it might be easier for you to work with some .php or .jsp or .asp files if you prefer. In that case, we provide
another version of the API which looks like:

GET /weblab/sessions/api.php
GET /weblab/sessions/test.php
POST /weblab/sessions/new.php
GET /weblab/sessions/status.php?session_id=ace76a23-5ccc-45eb-a03c-54dd67b016a5
POST /weblab/sessions/action.php?session_id=ace76a23-5ccc-45eb-a03c-54dd67b016a5

So as to activate this feature, you have to provide a http_experiment_extension configuration variable to
.php or .asp or .jsp or something else. Whatever you put will be appended to /weblab/sessions/api or
to /weblab/sessions/new.

Finally, we rely in JSON for the communications, so basically when we call /weblab/sessions/ with a POST
to perform a new request, we submit a JSON message by default. However, sometimes this is difficult for some
developers in some web frameworks. If this is your case, and you prefer that we submit you the data like in a regular
form, you may change the http_experiment_request_format configuration variable so it is set to form. If
you prefer a different format (such as XML or whatever), feel free to contact us (Contact) and we can add it.

Function 1: Get API version

This method lets WebLab-Deusto to know what is the set of methods that is available and in what format. Basically in
the future we might add new features to this API, which would make this API incompatible. So as to keep backwards
compatibility, we provide this method. As long as you provide your version here, we will be able to guarantee you
that you will be safe. The API version of the current documentation is 1.

In this particular function, it will be the laboratory server the one contacting your server in a single step 1:

126 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

This is the only method where Authorization is not required:

GET /weblab/sessions/api HTTP/1.0
[...]

The expected response is:

HTTP/1.0 200 OK
Content-type: application/json
[...]

{
"api_version": "1",

}

If the http_experiment_extension is set, for example, to .php, the request will be:

GET /weblab/sessions/api HTTP/1.0
[...]

And the response will be the same.

Note: Take into account that the version is a string (and not an int), as it happens in the managed API.

Function 2: Test connection

This method checks whether the connection is valid or not, according to the provided parameters (e.g., if the username
and password are correct). As in the previous case, it is started directly by the Laboratory server:

3.1. Remote laboratory development 127

WebLab-Deusto Documentation, Release 5.0

In this case, the Authorization header will be provided, and you are responsible of checking it:

GET /weblab/sessions/test HTTP/1.0
Authorization: Basic d2VibGFiOnBhc3N3b3Jk
[...]

The expected response is the following if correct:

HTTP/1.0 200 OK
Content-type: application/json
[...]

{
"valid": true,

}

Or the following if not correct:

HTTP/1.0 200 OK
Content-type: application/json
[...]

{
"valid": false,
"error_messages": ["Invalid credentials"]

}

If the http_experiment_extension is set, for example, to .php, the request will be:

128 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

GET /weblab/sessions/test.php HTTP/1.0
Authorization: Basic d2VibGFiOnBhc3N3b3Jk
[...]

And the response will be the same.

Note: The error_messages is a list, just in case there are multiple reasons why the connection is failing. And it
is a list of human-readable messages to show the administrator when something goes wrong.

Function 3: Start

As mentioned, this method notifies the server to let a new user access the laboratory. In the following diagram:

The steps described in the diagram are the following:

1. The user will contact WebLab-Deusto requesting a reservation. If there was somebody already using the system,
the WebLab-Deusto client will be contacting the server and showing that the user is in a queue.

2. Whenever the user can access the laboratory, WebLab-Deusto will initialize the session contacting the Labora-
tory server.

3. The Laboratory server will then contact the Experiment Server, which is provided by WebLab-Deusto in this
case. It is a wrapper that wraps the requests to WebLab-Deusto to your server using the HTTP interface.

4. The Experiment server will contact your server calling the start function, as defined below. You are expected
to provide a URL and let that student access with that URL, as well as a session identifier so the Experiment
Server can contact your server for that session.

3.1. Remote laboratory development 129

WebLab-Deusto Documentation, Release 5.0

5. All the layers will return that URL to the user, so the user will automatically be redirected to that URL. In this
step, the user will go to that URL directly.

So, in this method, an HTTP request is done to your server (step 4). The request is the following:

POST /weblab/sessions/ HTTP/1.0
Content-Type: application/json
Authorization: Basic d2VibGFiOnBhc3N3b3Jk
[...]

{
"back": "http://.../",
"client_initial_data": {
},
"server_initial_data": {

"request.locale": "es",
"request.username": "porduna",
"request.full_name": "porduna",
"request.experiment_id.category_name": "Aquatic experiments",
"request.experiment_id.experiment_name": "aquariumg",
"priority.queue.slot.length": 148

}
}

The parameters are: * back: indicating the URL to which the user is expected to be redirected

after. So, whenever the user session is finished, you should redirect the user to that URL.

• client_initial_data: a JSON-serialized document with the information sent by the user interface.

• server_initial_data: a JSON-serialized document with the information sent by the WebLab-Deusto
server. It includes:

– request.locale: language used by the client

– request.username: login of the student

– request.full_name: full name of the student (at this point, it’s still the username)

– request.experiment_id.category_name: category of the experiment

– request.experiment_id.experiment_name: experiment name

– priority.queue.slot.length: time in seconds for the particular user

– priority.queue.slot.start: since when counting this time

– priority.queue.slot.initialization_in_accounting: whether the initialization is
counted or not in that time

If the http_experiment_extension is set, for example, to .php, and the
http_experiment_request_format is set to form the request will be:

POST /weblab/sessions/new.php HTTP/1.0
Content-Type: multipart/form-data
Authorization: Basic d2VibGFiOnBhc3N3b3Jk
[...]

client_initial_data=%7B%7D&server_initial_data=%7B%22request.experiment_id.experiment_
→˓name%22%3A+%22aquariumg%22%2C+%22request.experiment_id.category_name%22%3A+
→˓%22Aquatic+experiments%22%2C+%22priority.queue.slot.length%22%3A+148%2C+%22request.
→˓username%22%3A+%22porduna%22%2C+%22request.full_name%22%3A+%22porduna%22%2C+
→˓%22request.locale%22%3A+%22es%22%7D&back=http%3A%2F%2F...%2F

130 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Which essentially is the quoted version of:

• back: the URL in string format

• client_initial_data: the dictionary above in JSON format (encoded). So in PHP for example you may
access by using json_decode($_POST['client_initial_data'], true)

• server_initial_data: the dictionary above in JSON format (encoded). So in PHP for example you may
access by using json_decode($_POST['server_initial_data'], true)

The expected response is the following:

HTTP/1.0 200 OK
Content-Type: application/json
[...]

{
"session_id": "ace76a23-5ccc-45eb-a03c-54dd67b016a5",
"url": "http://myserver.com/lab/?token=ace76a23-5ccc-45eb-a03c-54dd67b016a5

}

The returned url is where the user will be redirected to. The session_id will be used by the rest of the methods
to identify this user. For example, for notifying you that this user should be kicked out, WebLab-Deusto will use that
session_id.

Note: When creating such URL, you can use something like:

http://myserver/mylab?token=0ff5345e-c2d7-4e1e-84c1-54df43de60f5

However, ideally you should pass it with the # so as to avoid the token to be logged in all the proxies and similar, and
ideally it should be removed just after. For example, if you provide this link:

http://myserver/mylab#token=0ff5345e-c2d7-4e1e-84c1-54df43de60f5

And internally when accessing, the client in JavaScript takes the location.hash, uses that token and changes the
location.hash, it would remove certain security problems. Ideally, you should also use HTTPS instead of HTTP.

Function 4: Status

So as to know that if the user is still using the laboratory or not, WebLab-Deusto will periodically call this function.
As described in the diagram:

3.1. Remote laboratory development 131

http://myserver/mylab?token=0ff5345e-c2d7-4e1e-84c1-54df43de60f5
http://myserver/mylab#token=0ff5345e-c2d7-4e1e-84c1-54df43de60f5

WebLab-Deusto Documentation, Release 5.0

1. The WebLab-Deusto core server will call the Laboratory Server to see if the laboratory is still in use or not.

2. The Laboratory server will ask the Experiment server.

3. The Experiment server will ask your server to verify this.

Therefore, the user is not involved at any point. It is your responsability to use a proper mechanism to know if you
user is still using the laboratory. You can simply write a JavaScript code that calls a dummy service every 20 seconds
and if it has not been called in 40 seconds, then you report that he’s not using the laboratory anymore.

The HTTP method in particular is:

GET /weblab/sessions/ace76a23-5ccc-45eb-a03c-54dd67b016a5/status HTTP/1.0
Authorization: Basic d2VibGFiOnBhc3N3b3Jk
[...]

Where ace76a23-5ccc-45eb-a03c-54dd67b016a5 is the session_id provided in the start method.

If the http_experiment_extension is set, for example, to .php, the request will be:

GET /weblab/sessions/status.php?session_id=ace76a23-5ccc-45eb-a03c-54dd67b016a5 HTTP/
→˓1.0
Authorization: Basic d2VibGFiOnBhc3N3b3Jk
[...]

The expected response is:

HTTP/1.0 200 OK
Content-type: application/json
[...]

{

(continues on next page)

132 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

"should_finish": 10,
}

The value of should_finish is an integer. It represents the following:

• If it is -1, it means that the user must be kicked out.

• If it is 0, it means that WebLab-Deusto should not contact the server again for this session and wait until the
time expires.

• If it is over 0, it means that WebLab-Deusto should contact again after that number of seconds. For example, it
may return 10 so it calls again in 10 seconds. If the second time it returns 30, then the third call will call it 30
seconds later.

Note: You may use JavaScript to be notified that the user has closed the window. This is a good approach so you know
as soon as possible that the user has left. However, don’t rely uniquely on this approach, since if the user’s computer
shuts down, suspends, gets disconnected, that event will not be sent. So relying on two mechanisms (e.g., storing what
was the last action while sending periodically an event + JavaScript) makes the overall system more efficient.

Function 5: Stop

Finally, WebLab-Deusto will call the stop function whenever the user should be kicked out. As seen on the diagram:

This is usually triggered by the Core Server. The steps are the following:

1. The WebLab-Deusto Core server notifies the Laboratory server that it should finish.

2. The Laboratory Server notifies this to the Experiment server.

3.1. Remote laboratory development 133

WebLab-Deusto Documentation, Release 5.0

3. The Experiment Server notifies this to your server.

4. Whenever the user performs a new request to your server, you must notify him that the session is over. He
should be redirected whenever you consider to the back URL provided in the start function.

The HTTP request is the following:

POST /weblab/sessions/ace76a23-5ccc-45eb-a03c-54dd67b016a5 HTTP/1.0
Content-Type: multipart/form-data
Authorization: Basic d2VibGFiOnBhc3N3b3Jk
[...]

{
"action": "delete",

}

If the http_experiment_extension is set, for example, to .php, and the
http_experiment_request_format is set to form the request will be:

POST /weblab/sessions/action.php?session_id=ace76a23-5ccc-45eb-a03c-54dd67b016a5 HTTP/
→˓1.0
Content-Type: application/json
Authorization: Basic d2VibGFiOnBhc3N3b3Jk
[...]

action=delete

The expected HTTP response is the following. The simplest example would be:

HTTP/1.0 200 OK
Content-Type: application/json
[...]

{}

Another example would be:

HTTP/1.0 200 OK
Content-Type: application/json
[...]

{
"finished": false,
"ask_again": 10.0,

}

And, 10 seconds later:

HTTP/1.0 200 OK
Content-Type: application/json
[...]

{
"finished": true,
"data": "Result=10"

}

It may contain the following values:

134 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

• finished: in case it has not finished. By default, true is assumed. But if the resource disposal takes time,
return false and the method will be called again, and return true whenever it is successfully cleaned.

• data: in case some data should be returned to the experiment client or logged.

• ask_again: if finished is false, you can provide a float that it’s a number of seconds to be waited to be
called again. If you return "ask_again": 30.5, it will call again in approximately 30.5 seconds.

Examples

We provide the following examples:

• Flask (with a library) (which uses weblablib, so it is more reliable)

• Flask (simple) (which shows how to implement a simplified version)

• PHP (multiple files) (which uses multiple files and regular forms)

• PHP (single file) (which uses a single file and the standard form)

Flask (with a library)

Go to http://developers.labsland.com/weblablib/ to see how to use and install weblablib. Then, check Deployment.

Flask (simple)

In the following URL you have a simplified version on how an unmanaged remote lab could be implemented from
scratch. The target of this code is only to be shown as an example (so you could implement something similar with
your framework). If you want to use Flask, we encourage you to use the library explained above. The code itself is
available at:

• https://github.com/weblabdeusto/weblabdeusto/blob/master/experiments/unmanaged/http/python/flask/sample.
py

Here we will only cover some parts of it. In the following snippet, we keep in two dictionaries in memory what are
the current active sessions and expired sessions. You shouldn’t do this, but rely on a session mechanism, Redis, SQL
or similar. While using memory, make sure that you don’t run the server in multiple processes (otherwise it will fail):

###############################
#
Store in DATA dictionaries
representing users.
#
DATA = {
}

##################################
#
Store in EXPIRED_DATA, expired
addresses pointing to their
previous URLs
#
EXPIRED_DATA = {
}

3.1. Remote laboratory development 135

http://developers.labsland.com/weblablib/
https://github.com/weblabdeusto/weblabdeusto/blob/master/experiments/unmanaged/http/python/flask/sample.py
https://github.com/weblabdeusto/weblabdeusto/blob/master/experiments/unmanaged/http/python/flask/sample.py

WebLab-Deusto Documentation, Release 5.0

In the laboratory code, we require the user to provide us a session_id. With it, we check in the dictionaries above
and see whether the user exists (if it is in DATA), existed (if it is in EXPIRED_DATA, and will be redirected to a
different URL), or never existed.

#####################################
#
Main method. Authorized users
come here directly, with a secret
which is their identifier. This
should be stored in a Redis or
SQL database.
#
@app.route('/lab/<session_id>/')
def index(session_id):

data = DATA.get(session_id, None)
if data is None:

back_url = EXPIRED_DATA.get(session_id, None)
if back_url is None:

return "Session identifier not found"
else:

return redirect(back_url)

data['last_poll'] = datetime.datetime.now()
return """<html>
<head>

<meta http-equiv="refresh" content="10">
</head>
<body>

Hi %(username)s. You still have %(seconds)s seconds
</body>
</head>
""" % dict(username=data['username'], seconds=(data['max_date'] - datetime.

→˓datetime.now()).seconds)

We check using HTTP Basic to see if the user is valid or not by providing this auxiliar function:

def check_http_credentials(testing=False):
auth = request.authorization
if auth:

username = auth.username
password = auth.password

else:
username = password = "No credentials"

weblab_username = app.config['WEBLAB_USERNAME']
weblab_password = app.config['WEBLAB_PASSWORD']
if username != weblab_username or password != weblab_password:

if testing:
return Response(json.dumps(dict(valid=False, error_messages=["Invalid

→˓credentials"])), status=401, headers = {'WWW-Authenticate':'Basic realm="Login
→˓Required"', 'Content-Type': 'application/json'})

print("In theory this is weblab. However, it provided as credentials: {} : {}
→˓".format(username, password))

return Response(response=("You don't seem to be a WebLab-Instance"),
→˓status=401, headers = {'WWW-Authenticate':'Basic realm="Login Required"'})

(continues on next page)

136 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

return None

Then, we provide the basic api and test functions:

@app.route("/foo/weblab/sessions/api")
def api_version():

return jsonify(api_version="1")

@app.route("/foo/weblab/sessions/test")
def test():

response = check_http_credentials(testing=True)
if response is not None:

return response
return jsonify(valid=True)

And the start function, that stores data in DATA as new users come, and provide the link to the laboratory code:

@app.route("/foo/weblab/sessions/", methods=['POST'])
def start_experiment():

response = check_http_credentials()
if response is not None:

return response

Parse it: it is a JSON file containing two fields:
request_data = request.get_json(force=True)

client_initial_data = request_data['client_initial_data']
server_initial_data = request_data['server_initial_data']

print server_initial_data

Parse the initial date + assigned time to know the maximum time
start_date_str = server_initial_data['priority.queue.slot.start']
start_date_str, microseconds = start_date_str.split('.')
start_date = datetime.datetime.strptime(start_date_str, "%Y-%m-%d %H:%M:%S") +

→˓datetime.timedelta(microseconds = int(microseconds))
max_date = start_date + datetime.timedelta(seconds = float(server_initial_data[

→˓'priority.queue.slot.length']))

Create a global session
session_id = str(random.randint(0, 10e8)) # Not especially secure 0:-)
DATA[session_id] = {

'username' : server_initial_data['request.username'],
'max_date' : max_date,
'last_poll' : datetime.datetime.now(),
'back' : request_data['back']

}

link = url_for('index', session_id=session_id, _external = True)
print "Assigned session_id: %s" % session_id
print "See:",link
return jsonify(url=link, session_id=session_id)

In the status function we tell WebLab what is the status taking into account the information from the sessions:

@app.route('/foo/weblab/sessions/<session_id>/status')
def status(session_id):

(continues on next page)

3.1. Remote laboratory development 137

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

response = check_http_credentials()
if response is not None:

return response

data = DATA.get(session_id, None)
if data is not None:

print "Did not poll in", datetime.datetime.now() - data['last_poll'], "seconds
→˓"

print "User %s still has %s seconds" % (data['username'], (data['max_date'] -
→˓datetime.datetime.now()).seconds)

if (datetime.datetime.now() - data['last_poll']).seconds > 30:
print "Kick out the user, please"
return jsonify(should_finish=-1)

print "Ask in 10 seconds..."
#
If the user is considered expired here, we can return -1 instead of 10.
The WebLab-Deusto scheduler will mark it as finished and will reassign
other user.
#
return jsonify(should_finish=10)

And in the last one we end the session and move it to EXPIRED_DATA:

@app.route('/foo/weblab/sessions/<session_id>', methods=['POST'])
def dispose_experiment(session_id):

response = check_http_credentials()
if response is not None:

return response

request_data = request.get_json(force=True)
if 'action' in request_data and request_data['action'] == 'delete':

if session_id in DATA:
data = DATA.pop(session_id, None)
if data is not None:

EXPIRED_DATA[session_id] = data['back']
return jsonify(message='Deleted')

return jsonify(message='Not found')
return jsonify(message='Unknown action')

Note: EXPIRED_DATA will never be cleaned until you restart that server.

So as to test it, you might start deploying it and checking how it works. Jump to Deployment.

PHP (multiple files)

In:

• https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/unmanaged/http/php

You have the PHP code sample for the unmanaged laboratories. You should copy all that code to /var/www/html/
phplabs. Then, you should create the database, as:

138 Chapter 3. Remote laboratory development and management

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/unmanaged/http/php

WebLab-Deusto Documentation, Release 5.0

$ mysql -uroot -p
mysql> CREATE DATABASE phplab DEFAULT CHARSET 'utf8';
Query OK, 1 row affected (0.00 sec)
mysql> GRANT ALL ON phplab.* TO 'phplab'@'localhost' IDENTIFIED BY 'phplab';
Query OK, 0 rows affected (0.00 sec)
mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)

$ mysql -uphplab -p phplab < initial.sql

Once created, you can use the following configuration (more info on Remote laboratory deployment):

http_experiment_url: http://localhost/phplab/multifile
http_experiment_username: admin
http_experiment_password: password
http_experiment_request_format: form
http_experiment_extension: .php

So it will not submit JSON messages but regular form messages, to files called new.php, action.php, etc. as
shown in the code.

PHP (single file)

In:

• https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/unmanaged/http/php

You have the PHP code sample for the unmanaged laboratories. You should copy all that code to /var/www/html/
phplabs. Then, you should create the database, as:

$ mysql -uroot -p
mysql> CREATE DATABASE phplab DEFAULT CHARSET 'utf8';
Query OK, 1 row affected (0.00 sec)
mysql> GRANT ALL ON phplab.* TO 'phplab'@'localhost' IDENTIFIED BY 'phplab';
Query OK, 0 rows affected (0.00 sec)
mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)

$ mysql -uphplab -p phplab < initial.sql

Once created, you can use the following configuration (more info on Remote laboratory deployment):

http_experiment_url: http://localhost/phplab/weblab.php
http_experiment_username: admin
http_experiment_password: password

Internally, you can see how weblab.php implements the defined calls, and how the user will be redirected to
index.php.

Deployment

So as to see how to deploy this type of lab, go to Remote laboratory deployment.

3.1. Remote laboratory development 139

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/unmanaged/http/php

WebLab-Deusto Documentation, Release 5.0

LabVIEW Remote Panels

Note: This approach is experimental. Don’t hesitate to Contact for further and updated information.

The disadvantage is that it has all the disadvantages of the LabVIEW remote panels: it does not work in most web
browsers, requires several ports to be open, etc. However, it is the easiest approach to implement a new remote
laboratory for LabVIEW developers nowadays.

If you want to try this approach, take the .vi files from:

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/unmanaged/labview

And in the the deployment section (Remote laboratory deployment; in particular Unmanaged server), use the
same steps, except for using experiments.labview_remote_panels.LabviewRemotePanels instead
of experiments.http_experiment.HttpExperiment. The following options should be also added in that
segment:

electronics:
class: experiments.labview_remote_panels.LabviewRemotePanels
type: experiment
config:

labview_host: 127.0.0.1
labview_port: 20000
labview_url: http://mylabviewserver.myinstitution.edu:8080/index.html
labview_shared_secret: 31e6b0b6-757d-4331-b731-27aeb8f8f04d

Additionally, you can set debugging information by adding:

electronics:
class: experiments.labview_remote_panels.LabviewRemotePanels
type: experiment
config:

labview_host: 127.0.0.1
labview_port: 20000
labview_url: http://mylabviewserver.myinstitution.edu:8080/index.html
labview_shared_secret: 31e6b0b6-757d-4331-b731-27aeb8f8f04d
labview_debug_message: true
labview_debug_command: true

The meaning of the values is:

• labview_host: the IP address of the LabVIEW server. It can be in a different machine, so you must put
what’s the IP address.

• labview_port: the port of the WebLab-Deusto LabVIEW server. In the .vi you will see that you can
configure it. Note that it’s not the port of the Remote Panel (i.e., the public port that users will use), but only the
one that accepts connections from WebLab-Deusto.

• labview_shared_secret: a secret that you will also configure in the .vi file. The key is that it will tell
LabVIEW that the message comes from WebLab-Deusto (and not from somewhere else).

• labview_url: the URL of the remote panel. The LabVIEW remote panel must be publicly available.

Whenever a user comes to WebLab-Deusto, a session identifier will randomly be generated and sent to the LabVIEW
server. Then, it will be shown to the user in the client, with a button to go to the labview_url. Once there, the
LabVIEW code (your code) will have make sure that the user is valid if he provides such code. From that moment,
the user will use the Remote Panel as usual, and different triggers in the .vi code will tell you that you should tell the
user to finish (e.g., when a different user comes).

140 Chapter 3. Remote laboratory development and management

https://github.com/weblabdeusto/weblabdeusto/tree/master/experiments/unmanaged/labview

WebLab-Deusto Documentation, Release 5.0

Virtual machines

Note: The support for remote laboratories based on virtual machines is limited. While it works, the flexibility
provided by virtual machines is in general not enough for most remote laboratories.

3.1. Remote laboratory development 141

WebLab-Deusto Documentation, Release 5.0

Virtual Machines based remote labs

Introduction

WebLab-Deusto supports two kinds of experiments: Managed and Unmanaged experiments.

Managed experiments are fully integrated with WebLab-Deusto and, generally, developed specifically for it through
the use of its provided API. Data during the experiment tends to be transmitted through WebLab, which means logging
and accountability is both easy and accurate. They are the most frequent kind of experiment, and, when possible, it is
the most advisable type of experiment to use. However, it is not always possible or convenient to have such integration.
Sometimes, an experiment developer might be unable or unwilling to adequate his experiment, due to the nature of
the experiment itself or the time it would require to do so. For these cases, WebLab-Deusto provides Virtual Machine
based Unmanaged experiments.

Virtual Machine Experiment

Virtual Machine experiments work differently than traditional Managed experiments. A Virtual Machine experiment
does not include any WebLab-specific code. Instead, the experiment is developed anyhow and deployed on a Virtual
Machine image. WebLab-Deusto then manages that Virtual Machine. WebLab-Deusto users will, upon experiment
startup through the standard WebLab-Deusto web, receive a password. Then, they may use that password to connect to
the Virtual Machine through either Remote Desktop or VNC. From then on, the user can freely use the Virtual Machine
and the experiment deployed on it. Once the time has run out, WebLab-Deusto will close the Virtual Machine and
restore it to a pre-defined snapshot before the next use.

Supported Virtual Machine, OSes, and Protocols

Currently WebLab-Deusto VM system has been tested on Linux, under which the VNC protocol through the TightVNC
server (and compatible clients) is supported. It has also been tested on Windows, under which both UltraVNC and
Remote Desktop are supported.

The Virtual Machine software currently supported is Virtual Box.

It is noteworthy that this list is likely to be extended in the future, and that the system is easily extensible, so it would
not be particularly hard for a developer to add support to new VM software or new Protocols.

142 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

WebLab-Deusto VM software

For the password of a Virtual Machine remote managing protocol to be changed upon WebLab-Deusto’s request, it
is necessary to install certain software on the Virtual Machine snapshot. Currently, WebLab-Deusto provides a Vino
password changer for Linux and a Remote Desktop and UltraVNC password changer for Windows.

Safety

The power this system gives to the user is significant, as it grants potentially full access to a Virtual Machine. How-
ever, WebLab-Deusto uses the snapshot system provided by most Virtual Machine software to reset the machine to a
predefined state before every use. Thus, though during the available time the user is free to use the hard disk or even
break the system, no changes will be permanent. Hence, from that viewpoint, these experiments are completely safe.

Nonetheless, as usual, the experiment developer will need to be aware not to add experiment-specific risks and vulner-
abilities.

It is also noteworthy that in the case of an unmanaged experiment, this is slightly more important. Though the network
traffic of a managed experiment goes through the WebLab server and may hence be easily logged, users connect to the
Virtual Machine directly. Consequently, though there is still a certain degree of logging and accountability through the
standard WebLab login, reservation and experiment start-up mechaniams, obtaining information about the exact usage
of the experiment is not possible anymore.

Creating a new VM based experiment

In this section we will create and deploy a new VM based experiment.

Though the process is rather long and it will be described in detail, it is advisable to read everything carefully, and to
carry out and check each step before following to the next.

Our goal here will be to deploy a new VM experiment, with the following characteristics:

• Will use VirtualBox as a VM engine.

• The VM will run a Windows OS.

• Users will access the VM through RDP (Remote Desktop Protocol).

Note: WebLab-Deusto supports several VM OSs (Windows, Linux-likes, etc.) and a few access protocols (VNC,
RDP). Setting up a VM with those other OSes and protocols is beyond the scope of this guide. However, the process
would be very similar and only a few changes would be needed.

Warning: To make sure you are always on the right track, we are providing a checklist at the start and/or end of
some sections. Upon encountering such a checklist, please check carefully every point before going on.

Prerrequisites

WebLab-Deusto instance

Before being able to create a new VM based experiment, and before being able to start following this guide, you will
need to have a working instance of WebLab-Deusto.

3.1. Remote laboratory development 143

WebLab-Deusto Documentation, Release 5.0

If you do not have a working instance yet, you can find out how to create it in first steps.

Warning: CHECKLIST (Ensure the following before skipping to the next section)

1. I have a WebLab-Deusto instance.

2. My WebLab-Deusto instance is successfully deployed.

3. I have tested at least one experiment in my WebLab-Deusto instance, and it is working fine.

VirtualBox

Oracle VM VirtualBox is a virtualization engine. It will be the engine under which the machine with our experiment
will be run.

You may download the VirtualBox software package from the virtualbox downloads website, and install it normally.

Once installed, some further actions are required.

In order for WebLab-Deusto to be able to properly interact with VirtualBox, certain utilities that come with VirtualBox
need to be accessible from the command line. To do this:

1. Locate the VirtualBox installation folder. Often, this will be c:\Program Files\Oracle\VirtualBox or similar. Go
to that location through the windows file explorer, and make sure the VirtualBox files are there. Copy that exact
path to that folder to your clipboard (through ctrl+c).

2. We will now need to add that folder to our windows PATH environment variable. To do this under Windows
7, open the system properties dialog. Go to advanced settings and then to environment variables. Among
system variables you will find a variable named PATH. Modify it, and append the VirtualBox path. Make sure
a semicolon separates it from the last path in the variable.

Warning: CHECKLIST (Ensure the following before skipping to the next section)

1. I have successfully installed Oracle VirtualBox

2. VBoxManage is accessible. To check this: Open a Windows console terminal. Type vboxmanage -v and hit
enter. If it is accessible, a version number should appear (such as 4.1.12). If an error occurs, then it is not
accessible, and the previous steps should be redone.

Virtualized Windows machine

We now have Oracle VirtualBox installed. However, we do not really have a Virtual Machine yet. We will create
one now. In order to do this, we will require a copy of any version of Windows with RDP support. Windows XP is
recommended, though later versions of Windows should also work.

Note: Make sure that the Windows version you want to install supports the Remote Desktop server. Users will connect
to the Virtual Machine through Remote Desktop, so this is particularly important. Professional and higher versions
support the Remote Desktop server, but certain lower versions as well. If in doubt, check your specific version. You
can check through the official Microsoft website, or by checking whether the enable remote access option exists in
your system properties.

We can have our copy either in CD/DVD form, or in .ISO image form (other image formats supported by VirtualBox
are also fine).

144 Chapter 3. Remote laboratory development and management

https://weblabdeusto.readthedocs.org/en/latest/first_steps.html#first-steps
https://www.virtualbox.org/wiki/Downloads

WebLab-Deusto Documentation, Release 5.0

Once we have it, create the VM by following these broad steps:

1. Start Oracle VirtualBox

2. Hit the New button on the toolbar. A wizard dialog should pop up.

3. Go on in the dialog. Eventually, you will be asked to write a name for your VM. Give whichever name you
want. This name will identify the VM, and we will later refer to it. In this guide, we will refer to is as the VM
name. Choose also the right settings for the Operative System and Version fields. The exact values will depend
upon the version of Windows you wish to install.

4. Go on. The next screens should be rather straightforward. Make sure to give enough RAM to your Virtual
Machine (at least 512 MB is probably advisable, though it depends on the version you are installing, on the
experiment you want to place on it, and on the real machine you will be running the Virtual Machine from).
Make sure to give it enough Hard Disk space as well. Depending again on the circumstances, a good minimum
would probably be 10gb-20gb.

5. Eventually the wizard will let you select the installation media. Depending on whether you want to install
Windows from your CD/DVD drive, or from a .ISO image, you will need to configure it appropriately.

6. After setting the right installation media and proceeding, the Virtual Machine should start. If it doesn’t, start it
manually (Virtual Machines appear in VirtualBox on the left. Yours should appear there, with the VM name you
chose).

7. If the VM starts, and after a while the Windows Setup appears, then congratulations, you are on the right
track. If nothing happens, or if the VM starts but no installation media is found, then check the previous steps
(particularly, make sure you configured the installation media right, and that your CD or ISO image is right).

8. Install Windows normally.

9. Apart from whichever administrator account you create, create a second admin account called weblab. Naming
it weblab is important.

10. Once Windows is installed, make sure the Internet can be accessed from the Virtual Machine.

Note: The weblab account we created in previous steps could actually be named differently. But then, additional
configuration changes would be required in the In-VM Manager (which we will install in later sections of this guide),
and for simplicity, these won’t be covered here.

Congratulations. If everything went ok, you now have a virtual windows machine on your VirtualBox.

Warning: CHECKLIST (Ensure the following before skipping to the next section)

1. My Windows VM appears in VirtualBox. (Generally, on the left).

2. My Windows VM can be started through VirtualBox, and the virtualized Windows seems to work fine.

3. I can access the Internet from the virtualized Windows.

4. My virtualized Windows supports the Remote Desktop server. You can check whether the enable remote
access option exists in your system properties. (If you check this way, enable remote access now, and you
will save a step for later).

3.1. Remote laboratory development 145

WebLab-Deusto Documentation, Release 5.0

Installing the WebLab In-VM Manager

Warning: CHECKLIST (Before proceeding to this section, please check the following. Feel free to skip those
checks you have done already.)

1. I have a working, Windows VM which uses VirtualBox as its engine.

2. My Windows VM supports Remote Desktop server.

3. I can access the Internet from my Windows VM.

4. My virtualized Windows supports the Remote Desktop server. You can check whether the enable remote
access option exists in your system properties. (If you check this way, enable remote access now, and you
will save a step for later).

5. The terminal command VBoxManage is accessible. To check this: Open a Windows console terminal. Type
vboxmanage -v and hit enter. If it is accessible, a version number should appear (such as 4.1.12). If an error
occurs, then it is not accessible, and the previous steps should be redone.

What is the Manager?

Users will access the virtualized Windows machine through the RDP protocol (that is, Windows’ Remote Desktop).
So that only one user (the one who has a reservation) can access the machine at a given time, a different, unique,
random password will be provided for each session.

This means that somehow, something will need to change the password of the virtualized Windows each session.

That is the mission of the WebLab In-VM Manager.

The WebLab In-VM Manager is a service which will run within the virtualized Windows, and its main purpose will
be to receive password change requests from WebLab.

Because as of now, the VM you have created does not yet have such a service, we will need to install it.

Manager Prerrequisites

.NET Framework 3.5

The In-VM Manager requires the Microsoft .NET Framework version 3.5. The In-VM Manager is meant to run within
the Windows VM, so it is that machine, and not your physical, host machine, which needs to have it installed.

You may download Microsoft .NET Framework 3.5 from the official Microsoft website. It is advisable that you
download it from the Windows VM itself. Once downloaded, install it.

Some versions of Windows may come with .NET Framework 3.5 pre-installed. That is, however, likely not the case.

Making the VM accessible

Configuring the network

The VM needs to be accessible from the host machine through an IP address, so the VM network settings will need to
be configured properly.

Especifically, the host machine will need to connect to two ports on the windows Virtual Machine:

• Remote Desktop port (3389). The port end users will connect to. VM will need to accept connections to it from
the Internet.

146 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

• In-VM Manager port (6789). The WebLab-Deusto server will connect to it and command a password change
when needed.

Warning: RDP port needs to be accessible from the Internet. Otherwise, end-users will not be able to connect to
the machine. The VM Manager port, however, should only be accessible from the host machine. Otherwise, an
attacker could change the password of the VM at will. Note that, however, the security risk isn’t high. An attacker
could gain temporary control over the VM (which will last until the next experiment session begins, and the VM
is reset). However, the host system itself would not be compromised.

To open the network settings dialog:

1. Go to VirtualBox administrator dialog (the one with the VM list on the left)

2. Right click on the windows VM

3. Go to settings

4. When the settings dialog appears, go to network

There are essentially two ways to configure the network:

1. NAT: The VM will connect to the Internet through the host machine’s connection. In order for it to work, you
would need to forward port 3389 and 6791 properly. That is not particularly hard, but isn’t trivial either, so NAT
is not recommended.

2. Bridged Adapter: The VM will connect to the Internet directly. This is the recommended way. The Windows
VM will be given its own IP on your local network. If your local network doesn’t support DHCP, further
configuration may be needed. Note, however, that choosing this configuration means that the Guest and Host
machines will communicate through your local network directly. If your local network is somehow restricted or
filtered by a firewall, this may lead to issues (See the third note).

It is hence suggested that you choose Bridged Adapter.

Note: You might need to restart the VM before network configuration changes take effect.

Note: From this point, this guide will assume that you are indeed using a Bridged Adapter network.

Note: Choosing the Bridged Adapter configuration means that the communication between the Host and the Guest
machine will be carried out through the local network. If your local network is restricted or filtered by a firewall,
problems may arise. If you do indeed have a firewall, you will need to make sure that port 3389 (RDP) and port 6789
(communication between Guest and Host) are open. Port 3389 is easy to test, as you can assume that if RDP works,
the port is open. Port 6789 is harder to test, and if it is being blocked, you will only notice later on this guide, when
you carry out the suggested tests. If the firewall can’t be turned off or configured, then you could also use NAT instead
of Bridged Adapter. Though the concept is similar, using NAT is not fully covered in this guide. The only difference,
however, should be that you would need to configure Port Forwarding within the Virtual Box configuration, so that
you can access the required ports from the Host machine.

Checking the network config

If the network was properly configured, the virtualized Windows:

• Will still have Internet access

• Will have been assigned an IP in the local network

3.1. Remote laboratory development 147

WebLab-Deusto Documentation, Release 5.0

We will now find out which IP has been assigned to the VM.

There are several ways to do this. The easiest is (everything is done on the virtualized Windows):

• Open a terminal (a command line)

• Type ipconfig

You will see a list of every network adapter in your machine, along with its IP addresses. The adapter we seek is our
standard Local Network Ethernet Connection (or a similar name). The IP we seek is the IPv4 address. Write out that
IP address. From now on, we will refer to that IP as the VM IP.

Note: An example of a valid IP would be 192.168.1.105, or any LAN IP. An example of an invalid IP would be
localhost or 127.0.0.1. Often, but not always, an IP that starts with 10 won’t be valid either. If any of this happens,
and further checks are unable to access the VM, then re-check your network settings.

We should now be able to access our VM through the VM IP.

Our first check will be the following:

1. Start a command line.

2. Type ping <VM IP> on it. Replace <VM IP> with your actual VM IP. For instance: ping 192.168.1.105. Hit
enter.

If timeout errors appear, then the test failed. Your VM, for some reason, is not reachable through that IP. Check the pre-
vious steps. If, however, ping does send several packets, and certain times appear on the screen, then congratulations,
your machine, for now, seems to be reachable.

We will now carry out yet another check. In your host machine (not your VM one) open the Windows Remote Desktop
client. Try to connect to the VM IP. It should work. If it doesn’t:

1. Check that the version of Windows that the VM is running supports the Remote Desktop server.

2. Check (in the VM) that remote access is enabled.

3. Check this section again and ensure that the network is configured properly.

Warning: CHECKLIST (Ensure the following before skipping to the next section)

1. My guest Windows (virtualized Windows) supports Microsoft .NET Framework 3.5

2. My guest Windows can be accessed through Remote Desktop from my host Windows.

3. The firewall on my local network should not prevent access to port 6789.

Installing the In-VM Manager itself

Deploying the binaries

Locate the In-VM Manager binaries. All WebLab distributions should include them. If
%WEBLAB% is the WebLab folder, then the binaries we seek should be in: %WE-
BLAB%\experiments\unmanaged\vm_services\WindowsVM\WindowsVMService\bin\Release

Place those binaries into your guest Windows. For instance, you may place them into the c:\vmservice folder (create
it, it won’t exist).

Installing as a service

148 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

The Manager will run as a Windows service. To install it, you can’t execute WindowsVMService.exe straightaway.
Instead, you should execute the sc_install_service.bat script. If your VM is running a relatively modern version of
Windows you should right click on the script and run as administrator.

Warning: If you do not run the script with administrator priviledges, it will be unable to install it properly.

If for any reason sc_install_service.bat failed, you may try with install_service.bat, though this is not recommended.

When those succeed, your service will be installed as a standard Windows service, and can be started and stopped as
one. Alternatively, sc_start_service and sc_stop_service scripts are provided, but they probably will only work if the
service was installed through sc_install_service.

Before going on, check whether your service is indeed installed.

Open the windows Service Manager by running services.msc (hit [WINKEY]+R to be able to run programs).

Among the services there, a new one, WeblabVMService, should appear. If it doesn’t, do not go on, as something went
wrong.

Starting the service

Locate the service in the Windows Service Manager. If the service is not started already, then click on it and start it.

Note: Alternatively, if you installed the service through the sc_install_service script, you may use the sc_start_service
and the sc_stop_service to start and stop it.

If for any reason it fails to start, then something went wrong. Do not go on. Verify that you have .NET 3.0, and that
the service is installed properly.

Testing the service

Warning: CHECKLIST (Ensure the following before starting this section. All of them apply to the **guest*
Windows (virtualized one))*

1. WeblabVMService appears in my list of processes (which can be checked through the Windows’ ser-
vices.msc utility).

2. When I start WeblabVMService, no errors occur. The status of the service changes to started and stays so.

We will now carry out a few tests to check whether WeblabVMService is working as expected with our current settings.

Test 1 This test should be done within the guest OS. That is, within the virtualized Windows. (This test is meant to
check that the In-VM Manager is working properly and can change the local password).

1. If the WeblabVMService is not running already, start it.

2. Open a browser window.

3. Do the following query: http://localhost:6789/?sessionid=testone

4. It should take a while and then take you to a blank page with only the word Done written in black. If the page
cannot be loaded or if an error occurs, then the service is either not running or failing. If that is the case, do not
proceed. It is suggested that you contact the developers for support. From this point on, we will assume Done
was printed.

5. The password of your Windows weblab account has now been changed to testone. That is essentially what the
previous query did. You should now verify that this is indeed the case. Logout and try to login into your weblab
account, using testone as password.

3.1. Remote laboratory development 149

WebLab-Deusto Documentation, Release 5.0

6. If you manage to login using that password, then congratulations, the first test was successful, you may go on. If
you can’t login using that password, then something failed. If done was printed to the screen, this is fortunately
unlikely. Make sure you followed every step right. If it still doesn’t work, please contact the developers for
support.

Test 2 This test assumes that the first test was successful. We will try the following, (This test is meant to check that
the In-VM Manager can indeed be accessed and used from the Host machine).

1. If the WeblabVMService is not running already, start it.

2. Find out the IP that has been assigned to your Virtual Machine in your local network. This is the IP we
used in previous sections to connect to the machine through RDP. It will most likely be something such as
192.168.100.5, but it may start with 172 instead, or with other digits.

3. Open a browser in your host machine (that is, not your guest machine).

4. Do the following query: http://192.168.100.5:6789/?sessionid=testtwo. Replace 192.168.100.5 with your actual
VM IP.

5. It should take you to the same page as in the first test. A blank page with Done in black. If it worked, congratu-
lations. The second test was successful. You may try to login with the password testtwo into the weblab account
of your Virtual Machine if you wish to be sure. If it didn’t, see the following note.

Note: The previous test should have loaded a blank page with Done written in black. If it did, you may skip this
note. If it didn’t, something went wrong. Most often, this means that the guest OS is not accessible from the host
OS. Try to login into your host OS through RDP, in the same way you did before when you configured the network
settings of the VM (in previous sections of this guide). If you still can connect to the machine through RDP, then you
should repeat the first test, to make sure the service is still working. If RDP is working, and the first test is working,
but the second test is still failing, please make sure that you have no firewall which may be blocking port 6789 on your
local network (see the previous network settings section if you do). You may also try to repeat the second test with a
different browser. If it still does not work, please contact the developers for support. (In this guide, from this point,
we will assume that the second test did work. If it didn’t, you may not want to proceed until the issue is solved).

Congratulations, if you are here, both tests should have passed. This means that WeblabVMService is properly in-
stalled and working.

Warning: CHECKLIST (Ensure the following before going on to the next section.)

1. Test 1 was completed and works as expected.

2. Test 2 was completed and works as expected.

Preparing the Virtual Machine: Base Snapshot

What is a snapshot?

Most VM systems (such as VirtualBox) support snapshots. Snapshots describe the exact state of the Virtual Machine
at a given point of time. Once you have taken a shapshot, you can at any time restore your VM to it. This is how
WebLab-Deusto VM experiment ensures that any change a user makes to the VM, is restored before the next session.

150 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Base Snapshot

We will take an snapshot, which will be our base snapshot, the one every user will get to use. After the user is done,
WebLab-Deusto will restore the system to that same base snapshot again.

To prepare a first base snapshot, you can follow these steps:

1. Start your guest Windows.

2. Login into your weblab account.

3. Start the In-VM Manager if it is not running already.

4. Install any software you wish the users to have.

5. Open any program that you want the users to see.

6. Prepare everything for the user. Arrange every open window.

7. Your machine should now be ready. Without closing it, it’s time to take a snapshot. In VirtualBox menu, go to
Machine->Take a snapshot. It will let you choose a name. Type base. You can actually choose a different one
and configure it later, but we will use base for simplicity.

Note: Probably, your actual experiment is not ready yet. When it is, you will probably have to modify the base
snapshot to include it. Fortunately, that is easy. Though the previous steps are somewhat linear, really the only
important things are:

1. Your guest windows needs to be logged in the weblab account.

2. The In-VM manager needs to be started.

3. The machine must be turned on when you take the snapshot. If it isn’t, it will have to be boot-up everytime, and
this takes too long of a time.

These are essentially the three points that you have to take into account when creating your own base snapshots.

Testing the Base Snapshot

We will make sure we are on the right track. Do the following:

1. Start your guest Windows.

2. In your guest Windows, create some new file, and add it to the desktop. It can be any file, and have any name.
For instance, you may create a TESTING.TXT text file.

3. From this point on, we will use the command line, to ensure that it is working as expected too.

4. Open a command line in your host Windows. (That is, not on your virtualized Windows). We will use it to
manage virtualbox.

5. Recall your VM name. As we established in previous sections of this guide, that is the name that appears in
VirtualBox’s list, and which you can right click to start the machine, etc.

6. Type the following command in the command line: vboxmanage controlvm “Windows VM” poweroff. You
should replace Windows VM with your actual VM name. The following is what should happen:

C:\Users\lrg>vboxmanage controlvm "Windows VM" poweroff
Oracle VM VirtualBox Command Line Management Interface Version 3.2.10
(C) 2005-2010 Oracle Corporation
All rights reserved.

(continues on next page)

3.1. Remote laboratory development 151

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

Your machine should turn off. If it doesn’t, make sure you installed VirtualBox properly, as described in previous
sections, and that you specified the right VM name in your command.

7. We will now restore the base snapshot using the command line. Type the following: vboxmanage snapshot
“Windows VM” restore “base”. Replace Windows VM with the actual name of your Virtual Machine, and
replace base with the actual name of your snapshot (which is most likely base too, if you followed the previous
sections accurately). The following is what should happen:

C:\Users\lrg>vboxmanage snapshot "Windows VM" restore "base"
Oracle VM VirtualBox Command Line Management Interface Version 3.2.10
(C) 2005-2010 Oracle Corporation
All rights reserved.

8. Finally, we will start the VM through the command line. Type the following: vboxmanage startvm “Windows
VM”. Again, replace Windows VM with the actual name of your Virtual Machine. The Virtual Machine should
appear, loading your virtualized Windows, and the following should appear in your console:

C:\Users\lrg>vboxmanage startvm "Windows VM"
Oracle VM VirtualBox Command Line Management Interface Version 3.2.10
(C) 2005-2010 Oracle Corporation
All rights reserved.

9. If an error occurs, something is wrong. Check the previous steps. Note that your Windows snapshot should
have loaded. What you see is exactly what your experiment users will see. If something is amiss, for instance, if
Windows had to boot (if it wasn’t started already) or if the programs you left open when you created your base
snapshot are not open anymore, then you probably did not create the snapshot properly or you did not restore it.
You might want to check the previous sections if that is the case.

Warning: CHECKLIST (Please ensure the following before going on to the next section)

1. My VM was loaded properly. Windows did not need to boot.

2. The programs I left open when I created my base snapshot were there still.

3. I was able to accomplish all of the above through the command line.

If nothing went wrong, congratulations, your snapshot is ready.

Configuring the WebLab instance

If you have followed the guide up to here, every prerrequisite is now ready. In this last section, we will configure and
test the WebLab experiment itself. That is, the experiment server which will actually control the VM we have created,
through the means we have provided.

Recalling important variables

Before going on we will need to remember some variables which we established during the previous sections. We
need the following:

1. VM name: The name you gave to your VM. The one you used with the vboxmanage commands.

152 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

2. VM ip: The local IP of your VM. That is the IP that you used to connect to it through RDP.

Creating the instance through Weblab-admin

As we mentioned in the first sections of this guide, you need to have the weblab-admin script properly installed. The
next steps assume you do.

We will next use weblab-admin to create a new WebLab instance with our VM experiment. We will run the following
command:

weblab-admin create WLTest --vm --vbox-base-snapshot "base" --vbox-vm-name "Windows VM
→˓" --vm-estimated-load-time 30
--http-query-user-manager-url "http://192.168.64.143:6789" --vm-url 192.168.64.143 --
→˓http-server-port 8000

However, you will need to make a few changes to the command:

1. Change the IP, 192.168.64.143 for your VM ip. You need to change it for the http-query-user-manager-url,
which is, essentially, the address to which the password changing queries that we have explained in previous
sections are sent. You also need to change it for the vm-url variable. This isn’t that important, because it is
simply the URL that will be displayed to experiment users, so that they can connect through RDP.

2. Change the Virtual Machine name, “Windows VM”, for your own VM name.

3. Note that VMDeploy is, in this case, the name we have given to our new instance. You may change it, if you
want to.

This is what should happen:

(weblab.dev) C:\shared\weblab_github\weblabdeusto_lrg\server\src>weblab-admin
create WLTest --force --vm --vbox-base-snapshot base --vbox-vm-name "Windows VM"
--vm-estimated-load-time 30 --http-query-user-manager-url "http://192.168.64.143:6789"
--vm-url 192.168.64.143 --http-server-port 8000

patchZsiPyExpat skipped; ZSI not installed
patchZsiFaultFromException skipped; ZSI not installed

Congratulations!
WebLab-Deusto system created

Run:

weblab-admin start VMTestTwoS

to start the WebLab-Deusto system. From that point, you'll be able to access:

http://localhost:8000/

Or in production if you later want to deploy it in Apache:

http://localhost/weblab/

And log in as 'admin' using 'password' as password.

You should also configure the images directory with two images called:

sample.png and sample-mobile.png

(continues on next page)

3.1. Remote laboratory development 153

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

You can also add users, permissions, etc. from the admin CLI by typing:

weblab-admin admin VMTestTwoS

Enjoy!

If an error occurs here, it is likely that it is not related to the VM experiment. Please, make sure that you have installed
weblab properly and that you can deploy instances (without vm experiments) through weblab-admin. Unfortunately,
doing that is beyond the scope of this guide, but you can check the weblab installation documentation. From this point,
we will assume your instance was deployed properly.

Testing our new instance

To start our new instance, type the following:

weblab-admin start WLTest

Replace WLTest with the name you gave to your weblab instance (which is most likely WLTest either way.

Your WebLab instance should now start.

Open a browser in your computer, and connect to it through http://localhost:8000, which is the port we specified.

You can log into it with the account name admin and the password password. There should be a few experiments,
among them, your new VM experiment.

Check, reserve, and check whether it works as expected.

If the experiment is reserved properly, and you can connect to your Virtual Machine through RDP using the pro-
vided address, and if you can see the snapshot we set in previous sections. Congratulations, you have successfully
deployed an VM experiment!

If no error occurred, this guide is over.

If something went wrong, take a look at the next section.

Something failed

If you are in this section, some problem occurred and your VM deployment is not working. We will here describe
some likely errors.

My experiment seems to work properly, but I can’t connect through RDP to the provided address.

Make sure that the IP that you are being provided with is the same as the IP you tested with, on the network configura-
tion section of this guide. If it is and the network configuration section’s test still succeeds, please contact the Weblab
developers for support.

The VM experiment appears, but an error occurs before the reservation succeeds.

Make sure that you installed Weblab properly. That is, make sure that experiments other than the VM one work. If
other experiments don’t work, then the problem is most likely not related to VMs. Check the weblab installation guide.
If it’s only the VM experiment which does not work, then please contact the Weblab developers for support.

The VM experiment appears, I can reserve, but when the experiment loads, the progress bar never finishes.

154 Chapter 3. Remote laboratory development and management

http://localhost:8000

WebLab-Deusto Documentation, Release 5.0

Make sure that you have installed the In-VM Manager properly by carrying out every suggested test and checklist.
Particularly, make sure that you can change your Guest’s password from your Host machine through http://{guest-
ip}/?sessionid=newpassword. Check the console in case there is an error. If there is, please contact the Weblab
developers for support.

3.1.4 Summary

With this section, you have learnt to develop a new remote laboratory using WebLab-Deusto. Now it’s time to deploy
it, going to the following section.

3.2 Remote laboratory deployment

Table of Contents

• Remote laboratory deployment

– Introduction

– Step 1: Deploying the Experiment server

* Managed server

· WebLab-Deusto Python server

· Non-Python managed servers (XML-RPC based)

* Unmanaged server

– Step 2: Registering the experiment server in a Laboratory server

– Step 3: Registering a scheduling system for the experiment

* Load balancing

* Sharing resources among laboratories

* Concurrency

– Step 4: Add the experiment server to the database and grant permissions

* Configuring the client in a managed laboratory

· JavaScript

· Java applets

· Flash

* Configuring the client in an unmanaged laboratory

– Summary

3.2.1 Introduction

In the previous section we have covered how to create new remote laboratories using the WebLab-Deusto APIs. After
it, you have a working (yet draft or very initial) code that you want to use. However, we have not covered how to use
them in an existing deployment of WebLab-Deusto. This section covers this task. This way, here we will see how to
register the already developed clients and servers.

3.2. Remote laboratory deployment 155

http:/

WebLab-Deusto Documentation, Release 5.0

Fig. 2: Steps to deploy a remote laboratory in WebLab-Deusto.

This process is compounded of the following steps:

1. Step 1: Deploying the Experiment server

2. Step 2: Registering the experiment server in a Laboratory server

3. Step 3: Registering a scheduling system for the experiment

4. Step 4: Add the experiment server to the database and grant permissions

After these steps, your laboratory should be working.

3.2.2 Step 1: Deploying the Experiment server

As previously explained, there are two major ways to develop a WebLab-Deusto Experiment server:

1. Managed, which includes Experiment servers developed in Python, as well as experiments developed in other
platforms (e.g., Java, .NET, LabVIEW, C, C++. . .)

1. If the Experiment server was developed in Python, then it might use any of the protocols of WebLab-
Deusto. This part is explained below in WebLab-Deusto Python server.

2. However, if other platform was used (e.g., Java, .NET, C, C++), then the XML-RPC approach must be
taken. This is explained below in Non-Python managed servers (XML-RPC based).

2. Unmanaged, such as external HTTP applications.

This section assumes that you have previously read the following two sections:

• Directory hierarchy

• Technical description

Managed server

This section describes how to deploy a laboratory using the managed approach.

1. If the Experiment server was developed in Python, then it might use any of the protocols of WebLab-Deusto.
This part is explained below in WebLab-Deusto Python server.

156 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

2. However, if other platform was used (e.g., Java, .NET, C, C++), then the XML-RPC approach must be taken.
This is explained below in Non-Python managed servers (XML-RPC based).

WebLab-Deusto Python server

As explained in Directory hierarchy, WebLab-Deusto uses a directory hierarchy for configuring how the communica-
tions among different nodes is managed. In the case of WebLab-Deusto Python servers, you may run them inside the
same process as the Laboratory server, being able to use the configuration subsystem and being easier to manage.

So as to do this, let us assume that there is a simple system as the one created by:

$ weblab-admin create sample --http-server-port=12345

And that you have developed an experiment using the Python API as explained in WebLab-Deusto server (Python).
Your experiment can be something as simple as:

import json

from weblab.experiment.experiment import Experiment
import weblab.experiment.level as ExperimentApiLevel

class ElectronicsLab(Experiment):
def __init__(self, coord_address, locator, config, *args, **kwargs):

super(ElectronicsLab,self).__init__(*args, **kwargs)
self.config = config

def do_start_experiment(self, client_initial_data, server_initial_data):
print("Start experiment")
print("Client initial data:", json.loads(client_initial_data))
print("Server initial data:", json.loads(server_initial_data))
print("Camera:", self.config.get('my_camera_url'))
return json.dumps({ "initial_configuration" : "cam='cam1'"})

def do_get_api(self):
return ExperimentApiLevel.level_2

def do_dispose(self):
print("User left")
return "{}"

def do_send_command_to_device(self, command):
print("Command: ", command)
return "Got your command"

def do_should_finish(self):
print("Checking if the user should exit. If returned 0, will not ask again.

→˓If return 1, WebLab will kick him out")
return 5

Let us also assume that this code is in a file called myexperiments.py, and that is in a directory called /home/
tom/experiments.

Then, first, we will need to make sure that WebLab-Deusto can access that file. To this end, we would add that
directory to the PYTHONPATH.

In Windows we can run the following each time before running weblab-admin start:

3.2. Remote laboratory deployment 157

WebLab-Deusto Documentation, Release 5.0

(weblab) C:\Users\Tom> set PYTHONPATH=C:\Users\Tom\experiments

In Linux / Mac OS X we can run the following:

(weblab) tom@tom-laptop:~$ export PYTHONPATH=/home/tom/experiments:$PYTHONPATH

To verify that this is correct, you should be able to do the following:

$ python
[...]
>>> import myexperiments
>>>

If no ImportError occurs, it means that everything required (e.g., your code and WebLab-Deusto code) is available.

Warning: The PYTHONPATH path must be absolute (e.g., /home/tom/experiments) and not relative (e.g.,
../experiments). When running weblab-admin start, the current working directory is changed and
could lead to wrong results.

In this case, the Python class identifier of your Python laboratory would be myexperiments.ElectronicsLab
(since it’s the class ElectronicsLab of the module myexperiments.py). If you had a more complex hierarchy
(for example: a Python package called myinstitution and inside several modules like myexperiments.py),
then the Python class identifier would be myinstitution.myexperiments.ElectronicsLab.

The next step is to modify the configuration.yml file generated by weblab-admin create sample.
Originally, it looks like the following:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
laboratory1:
components:
experiment1:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
laboratory1:

config_file: lab1_config.py
protocols:
port: 10001

type: laboratory

Which looks like the following:

But we want to add a new laboratory called electronics so it becomes the following:

158 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Fig. 3: sample as created by default

Fig. 4: sample after the modification

3.2. Remote laboratory deployment 159

WebLab-Deusto Documentation, Release 5.0

So as to have this new component which is an experiment running your code, you have to add it inside the
components of laboratory1, as follows:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
laboratory1:
components:
experiment1:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
electronics:

class: myexperiments.ElectronicsLab
type: experiment

laboratory1:
config_file: lab1_config.py
protocols:
port: 10001

type: laboratory

If you want to add configuration variables, then you can either add them to the component or to any of the upper layers
(to the host, process or globally), and either add them in a configuration file or inline as follows:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
laboratory1:
components:
experiment1:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
electronics:

class: myexperiments.ElectronicsLab
config:
my_camera_url: http://cams.weblab.deusto.es/webcam/electronics.jpg

type: experiment

(continues on next page)

160 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

laboratory1:
config_file: lab1_config.py
protocols:
port: 10001

type: laboratory

From the Python code, you may access that variable.

From this point, the internal WebLab-Deusto address of your Experiment server is
electronics:laboratory1@core_host. You might see it later when seeing which device was accessed by
students, or in logs.

However, refer to Directory hierarchy for further details for more complex deployments.

Warning: Avoid naming conflicts with your laboratory name. For instance, myexperiments.
ElectronicsLab relies on the fact that there is no other myexperiments directory in the PYTHONPATH.
If you use other names, such as experiments.ElectronicsLab, voodoo.ElectronicsLab or
weblab.ElectronicsLab, you will enter in naming conflicts with existing modules of WebLab-Deusto or
of libraries used by WebLab-Deusto.

To verify that the configuration is fine, start the server:

$ weblab-admin start sample

* Running on http://0.0.0.0:12345/ (Press CTRL+C to quit)
Press <enter> or send a sigterm or a sigint to finish

If no error is reported in a few seconds, you can press enter to stop it and continue. If the following error appears:

$ weblab-admin start sample

* Running on http://0.0.0.0:12345/ (Press CTRL+C to quit)
Press <enter> or send a sigterm or a sigint to finish
[...]
voodoo.gen.exc.LoadingError: Error loading component: 'myexperiments.ElectronicsLab'
→˓for server electronics:laboratory1@core_host: No module named myexperiments

It means that the myexperiments.py file does not seem to be available. Verify that running in the same terminal reports
no error:

$ python
[...]
>>> import myexperiments
>>> print(myexperiments.ElectronicsLab)
<class 'myexperiments.ElectronicsLab'>
>>>

If it reports an ImportError, verify that you configured the PYTHONPATH according to what it was defined earlier in
this subsection.

After you start WebLab-Deusto with no error, you can now jump to the Step 2: Registering the experiment server in a
Laboratory server.

3.2. Remote laboratory deployment 161

WebLab-Deusto Documentation, Release 5.0

Non-Python managed servers (XML-RPC based)

As explained in Directory hierarchy, WebLab-Deusto uses a directory hierarchy for configuring how the commu-
nications among different nodes is managed. In the case of experiments using XML-RPC, it is required to lie the
system, by stating that there is an experiment server listening through XML-RPC in a particular port, with a particular
configuration that will never be run.

The easiest way to see an example of this configuration is running the following:

$ weblab-admin create sample --xmlrpc-experiment --xmlrpc-experiment-port=10039 --
→˓http-server-port=12345

This will generate a particular configuration, with two hosts at WebLab-Deusto level: one called core_host, and
the other exp_host.

Fig. 5: Default settings when creating an XMLRPC lab.

The generated configuration is the following:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
laboratory1:
components:
laboratory1:

config_file: lab1_config.py
protocols:
port: 10001

type: laboratory

(continues on next page)

162 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

exp_host:
runner: run-xmlrpc.py
host: 127.0.0.1
processes:
exp_process:

components:
experiment1:

class: experiments.dummy.DummyExperiment
protocols:
port: 10039
supports: xmlrpc

type: experiment

So as to run the first one, you should run:

$ weblab-admin start sample --host core_host

You may also run:

$ weblab-admin start sample --host exp_host

In other console at the same time. That way, there would be a Python Experiment server listening on port 10039.
However, this is not what we want here. What we want here is to be able to run other laboratories, such as a Java or
.NET Experiment server. So if we don’t execute this last command, and instead we run our Java (or .NET, C++, C. . .)
application listening in that port, everything will work.

For this reason, using the weblab-admin command with those arguments is the simplest way to get a laboratory
running. If you only want to test the system with your new developed remote laboratory, you can simply use the
--xmlrpc-experiment flags, in the configuration.yml change experiment1 for electronics and
jump to the Step 2: Registering the experiment server in a Laboratory server.

However, the typical action is to use the Directory hierarchy documentation to establish at WebLab-Deusto level that
there will be an Experiment server listening in a particular port.

So, let’s start from scratch. Let’s imagine that we create other example, such as:

$ weblab-admin create sample --http-server-port=12345

This will generate the following schema:

And the following configuration:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
laboratory1:
components:
experiment1:

(continues on next page)

3.2. Remote laboratory deployment 163

WebLab-Deusto Documentation, Release 5.0

Fig. 6: sample as created by default

(continued from previous page)

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
laboratory1:

config_file: lab1_config.py
protocols:
port: 10001

type: laboratory

We want to add an external Experiment server in a different host. So as to do this, we will append at the end the
following:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
laboratory1:
components:
experiment1:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
laboratory1:

config_file: lab1_config.py
protocols:

(continues on next page)

164 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

port: 10001
type: laboratory

exp_host:
runner: run-xmlrpc.py
host: 127.0.0.1
processes:
exp_process:

components:
electronics:

class: experiments.dummy.DummyExperiment
protocols:
port: 10039
supports: xmlrpc

type: experiment

Note: exp_host is another host, so must have the same indentation (number of spaces before) as core_host:

Actually, the values of runner and class in this case are not relevant, since they will not be used. With these
changes, the structure will be the following:

Fig. 7: sample modified to support a new electronics laboratory.

Doing this, the Experiment server will have been registered. You can test that running the following will start without
errors the core host:

$ weblab-admin start sample --host core_host

However, you must make sure that you start the Experiment server (developed in other technology: .NET, C++. . .)
every time you start the WebLab-Deusto servers (preferably, just before than just after).

3.2. Remote laboratory deployment 165

WebLab-Deusto Documentation, Release 5.0

Warning: By default, WebLab-Deusto will attempt to perform XML-RPC requests to http://127.0.0.
1:10039/.

However, certain libraries (such as the one of .NET) does not support this scheme, and it requires that WebLab-
Deusto calls http://127.0.0.1:10039/weblab. For this reason, in .NET and LabVIEW, you need to
configure the system adding path to the component configuration:

protocols:
port: 10039
supports: xmlrpc
path: /weblab

In the following sections, you will address the Experiment server as electronics:exp_process@exp_host.

You can now jump to the Step 2: Registering the experiment server in a Laboratory server.

Unmanaged server

The unmanaged laboratories internally are a managed laboratory where the managed server maps the calls to the
unmanaged server. Therefore, the steps are just a subset of the steps of the previous section. For the sake of simplicity,
we repeat here that subset, focused on an unmanaged server.

The first step is to modify the configuration.yml file generated by weblab-admin create sample.
Originally, it looks like the following:

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
laboratory1:
components:
experiment1:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
laboratory1:

config_file: lab1_config.py
protocols:
port: 10001

type: laboratory

Which looks like the following:

But we want to add a new laboratory called electronics so it becomes the following:

So as to have this new component which is an experiment running your code, you have to add it inside the
components of laboratory1, as follows:

166 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Fig. 8: sample as created by default

Fig. 9: sample after the modification

3.2. Remote laboratory deployment 167

WebLab-Deusto Documentation, Release 5.0

hosts:
core_host:
runner: run.py
config_file: core_host_config.py
processes:

core_process1:
components:
core:
config:
core_facade_port: 10000
core_facade_server_route: route1

type: core
laboratory1:
components:
experiment1:

class: experiments.dummy.DummyExperiment
config:
dummy_verbose: true

type: experiment
laboratory1:

config_file: lab1_config.py
protocols:
port: 10001

type: laboratory
electronics:

class: experiments.http_experiment.HttpExperiment
config:
http_experiment_url: http://server.myinstitution.edu/experiment1/
http_experiment_username: weblab
http_experiment_password: bdca31bd-b5d4-4f2f-995a-e6cd9d0a1b2d

type: experiment

Note: Please take into account that electronics must be indented as laboratory1 (same number of spaces
before), as shown in the example.

The name of experiments.http_experiment.HttpExperiment is fixed. The configuration variables are
the ones you provide so as to let the unmanaged laboratory know that it’s WebLab-Deusto accessing. Make sure that
in the code you develop you take this into account and check these credentials.

You can now jump to the Step 2: Registering the experiment server in a Laboratory server.

3.2.3 Step 2: Registering the experiment server in a Laboratory server

In the following figure, we have already finished step 1, which is the most complex. The rest of the steps are inde-
pendent of the technology used, and they are only focusing on registering the laboratory in the different layers. In this
subsection, we’re in the step 2: registering the server in the Laboratory server.

Each Experiment Server must be registered in a single Laboratory server. One Laboratory Server can manage multiple
Experiment servers. So as to register a Experiment server, we have to go to the Laboratory server configuration file. In
the near future, this configuration will disappear and everything will be configured in the database. When you create
a WebLab-Deusto instance doing:

$ weblab-admin create sample

This file by default is called lab1_config.py, and by default it contains the following:

168 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Fig. 10: We’re in step 3.

laboratory_assigned_experiments = {
'exp1:dummy@Dummy experiments' : {

'coord_address' : 'experiment1:laboratory1@core_host',
'checkers' : ()

},
}

This means that the current Laboratory Server has one Experiment Server assigned.

• exp1:dummy@Dummy experiments is the identifier for this resource at the Laboratory Server. Typically
dummy is the name as it will be in the database and Dummy experiments is the category name as it will be
in the database. exp1 is not published anywhere, but will be used by the Core server in the following step.

• experiment1:laboratory1@core_host is the identifier at WebLab-Deusto level of the experiment. It
establishes that it is the component experiment1 of the process laboratory1 of the host core_host.

You can find in Multiple core servers more elaborated examples.

So as to add the new experiment, you must add a new entry in that Python dictionary. For example, if you have
added an electronics laboratory, and in the previous step you have located them in the laboratory1 instance in the
core_host, you should edit this file to add the following:

laboratory_assigned_experiments = {
'exp1:dummy@Dummy experiments' : {

'coord_address' : 'experiment1:laboratory1@core_host',
'checkers' : ()

},
'exp1:electronics@Electronics experiments' : {

'coord_address' : 'electronics:laboratory1@core_host',
'checkers' : (),
'api' : '2',

},
}

If your laboratory is an unmanaged laboratory, then the client redirect could cause problems since when the user
is redirected, WebLab-Deusto might assume that the user is not anymore logged in and the laboratory should be re-
scheduled to other user. So as to avoid this, if your experiment is unmanaged, add also the manages_polling

3.2. Remote laboratory deployment 169

WebLab-Deusto Documentation, Release 5.0

variable:

laboratory_assigned_experiments = {
'exp1:dummy@Dummy experiments' : {

'coord_address' : 'experiment1:laboratory1@core_host',
'checkers' : (),
'manages_polling': True,

},
}

If you have used XML-RPC, the experiment server is somewhere else outside the core_host, but you only need to
put in coord_address the identifier. For example, if you created a new laboratory using Java, you will need to add
something like:

laboratory_assigned_experiments = {
'exp1:dummy@Dummy experiments' : {

'coord_address' : 'experiment1:laboratory1@core_host',
'checkers' : ()

},
'exp1:electronics@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2'

},
}

The api variable indicates that the API version is 2. If in the future we change the Experiment server API, the system
will still call your Experiment server using the API available at this time. If you are using an old library, you might
state api to 1 and it will work.

One of the duties of the Laboratory server is to check frequently whether the Experiment server is alive or not. This
may happen due to a set of reasons, such as:

• The laboratory uses a camera which is broken

• The connection failed

• The Experiment server was not started or failed

By default, every few seconds the system checks if the communication with the Experiment server works. If it is
broken, it will notify the administrator (if the mailing variables are configured) and will remove it from the queue. If
it comes back, it marks it as fixed again.

However, you may customize the checkers that are applied. The default checkers are defined in weblab.lab.
status_handler (code). At the time of this writing, there are two:

• HostIsUpAndRunningHandler, which opens a TCP/IP connection to a particular host and port. If the
connection fails, it marks the experiment as broken.

• WebcamIsUpAndRunningHandler, which downloads an image from a URL and checks that the image is
a JPEG or PNG.

So as to use them, you have to add them to the checkers variable in the Laboratory server configuration. For
example, if you have a FPGA laboratory with a camera and a microcontroller that does something, you may have the
following:

'exp1:ud-fpga@FPGA experiments' : {
'coord_address' : 'fpga:process1@box_fpga1',
'checkers' : (

('WebcamIsUpAndRunningHandler', ("https://www.weblab.deusto.es/
→˓webcam/proxied.py/fpga1",)),

(continues on next page)

170 Chapter 3. Remote laboratory development and management

https://github.com/weblabdeusto/weblabdeusto/tree/master/server/src/weblab/lab/status_handler.py

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

('HostIsUpAndRunningHandler', ("192.168.0.70", 10532)),
),

'api' : '2',
},

In this case, the system will check from time to time that URL to find out an image, and will connect to that port in
that IP address, as well as the default checking (calling a method in the Experiment server to see that it is running).

You can develop your own checkers in Python, inheriting the AbstractLightweightIsUpAndRunningHandler
class and adding the class to the global HANDLERS variable of that module.

Additionally, if you have laboratories that you don’t want to check, you may use the following optional variable in the
Laboratory server. It will simply skip this process.

laboratory_exclude_checking = [
'exp1:electronics@Electronics experiments',
'exp1:physics@Physics experiments',

]

After this, you can jump to Step 3: Registering a scheduling system for the experiment.

3.2.4 Step 3: Registering a scheduling system for the experiment

Now we move to the Core server. The Core server manages, among other features, the scheduling of the experiments.
At the moment of this writing, there are different scheduling options (federation, iLabs compatibility, and priority
queues). We do not support booking using a calendar at this moment.

All the configuration of the Core server related to scheduling is by default in the core_host_config.py file. It is
placed there so if you have multiple Core servers in different instances (which is highly recommended), you have the
configuration in a single location. In this file, you will find information about the database, the scheduling backend,
etc.

The most important information for registering a remote laboratory is the following:

core_scheduling_systems = {
'dummy' : ('PRIORITY_QUEUE', {}),
'robot_external' : weblabdeusto_federation_demo,

}

Here, it is defined the different schedulers available for each remote laboratory type. WebLab-Deusto supports load
balancing, so it assumes that you may have multiple copies of a remote laboratory. In that sense, we will say that one
experiment type might have multiple experiment instances. This variable (core_scheduling_systems) defines
which scheduling system applies to a particular experiment type. Say that you have one of five copies of a experiment
identified by electronics (of category Electronics experiments). Then you will add a single experiment
type to this variable. If you only have one, it’s the same procedure (adding a single experiment type). The name used
is only used inside this file, and it has no relation with previous names.

core_scheduling_systems = {
'dummy_queue' : ('PRIORITY_QUEUE', {}),
'robot_external' : weblabdeusto_federation_demo,
'electronics_queue' : ('PRIORITY_QUEUE', {}),

}

However, we still have to map the experiment instances to this experiment type. So as to do this, you will see that
there is another variable in the Core server which by default it has:

3.2. Remote laboratory deployment 171

WebLab-Deusto Documentation, Release 5.0

core_coordinator_laboratory_servers = {
'laboratory1:laboratory1@core_host' : {

'exp1|dummy|Dummy experiments' : 'dummy1@dummy_queue',
},

}

This variable defines which Laboratory servers are associated, which experiment instances are associated to each
of them, and how they are related to the scheduling system. For instance, with this default value, it is stating that
there is a Laboratory server located at core_host, then in laboratory1 and then in laboratory1. This
Laboratory server manages a single experiment server, identified by exp1 of the experiment type dummy of category
Dummy experiments. This experiment instance represents a slot called dummy1 of the scheduler identified by
dummy_queue.

So, when a user attempts to use an experiment of dummy (category Dummy experiments), the system is going to
look for how many are available. It will see that there is only one slot (dummy1) in the queue (dummy_queue) that
is of that type. So if it is available, it will call that Laboratory server asking for exp1 of that experiment type. But if
there was no slot available (e.g., some other student is using it), it will simply wait for that slot to be available.

Therefore, if you have added a single Experiment server of electronics to the existing Laboratory server, you can safely
add:

core_coordinator_laboratory_servers = {
'laboratory1:laboratory1@core_host' : {

'exp1|dummy|Dummy experiments' : 'dummy1@dummy_queue',
'exp1|electronics|Electronics experiments' : 'electronics1@electronics_

→˓queue',
},

}

In the near future, all this will be in the database and therefore it will not be dealt with file-based configurations.
However, in the meanwhile it’s very important to understand what names are mapped among the different files.

The name exp1|electronics|Electronics experiments is mapped to the name
exp1:electronics@Electronics experiments that we used in the previous section in the Labora-
tory Server. However, the separators are changed from : or @ to |. The name exp1 is only used in those two files.
However, the other two components are the experiment name (electronics) and category name (Electronics
experiments) in the database.

The name electronics1 is not used anywhere else, so feel free to use any other name (e.g., slot1, etc.).

With this information, you are ready to jump to Step 4: Add the experiment server to the database and grant permis-
sions. However, here we document other special scenarios, such as balancing the load of users among different copies
of the laboratories, or supporting more than one user in a single laboratory at the same time.

Load balancing

If you have two copies of the same type of laboratory, you can add:

core_coordinator_laboratory_servers = {
'laboratory1:laboratory1@core_host' : {

'exp1|dummy|Dummy experiments' : 'dummy1@dummy_queue',
'exp1|electronics|Electronics experiments' : 'electronics1@electronics_

→˓queue',
'exp2|electronics|Electronics experiments' : 'electronics2@electronics_

→˓queue',
},

}

172 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

This means that if two students come it asking for an electronics laboratory, one will go to one of the copies and
the other to the other. The process is random. A third user would wait for one of these two students to leave.

If you have two different experiments (one of electronics and one of physics), then you should add:

core_coordinator_laboratory_servers = {
'laboratory1:laboratory1@core_host' : {

'exp1|dummy|Dummy experiments' : 'dummy1@dummy',
'exp1|electronics|Electronics experiments' : 'electronics1@electronics_

→˓queue',
'exp1|physics|Physics experiments' : 'physics1@physics_queue',

},
}

Sharing resources among laboratories

This system is designed to be flexible. For instance, it supports to have more than one Experiment server associated
to the same physical equipment. For example, in WebLab-Deusto we have the CPLDs and the FPGAs, with one
Experiment server that allows users to submit their own programs. However, we also have other Experiment servers
called demo, which are publicly available and anyone can use them. These Experiment servers do not allow users to
submit their own program, though: they use their own default program for demonstration purposes. Additionally, we
have two CPLDs, so the load of users is balanced between these two copies, and a single FPGA. The configuration is
the following:

core_coordinator_laboratory_servers = {
'laboratory1:laboratory1@core_host' : {

Normal experiments:
'exp1|ud-pld|PLD experiments' : 'pld1@pld_queue',
'exp2|ud-pld|PLD experiments' : 'pld2@pld_queue',
'exp1|ud-fpga|FPGA experiments' : 'fpga1@fpga_queue',

Demo experiments: note that the scheduling side is the same
so they are using the same physical equipment.
'exp1|ud-demo-pld|PLD experiments' : 'pld1@pld_queue',
'exp2|ud-demo-pld|PLD experiments' : 'pld2@pld_queue',
'exp1|ud-demo-fpga|FPGA experiments' : 'fpga1@fpga_queue',

},
}

In this case, if three students reserve ud-pld@PLD experiments, two of them will go to the two copies, but the
third one will be in the queue. If somebody reserves a ud-demo-pld@PLD experiments, he will also be in the
queue, even if the laboratory and the code that he will execute is different. The reason is that it is using the same exact
device, so it makes sense decoupling the scheduling subsystem of the experiment servers and clients.

Concurrency

Finally, one feature of this system is that it enables that you provide more than one time slot to a single resource. For
example, you may establish at Core server that there are 10 different copies of the laboratory, even if there is a single
one:

core_coordinator_laboratory_servers = {
'laboratory1:laboratory1@core_host' : {

'exp1|dummy|Dummy experiments' : 'dummy1@dummy_queue',
'exp1|electronics|Electronics experiments' : 'electronics1@electronics_

→˓queue', (continues on next page)

3.2. Remote laboratory deployment 173

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

'exp2|electronics|Electronics experiments' : 'electronics2@electronics_
→˓queue',

'exp3|electronics|Electronics experiments' : 'electronics3@electronics_
→˓queue',

'exp4|electronics|Electronics experiments' : 'electronics4@electronics_
→˓queue',

'exp5|electronics|Electronics experiments' : 'electronics5@electronics_
→˓queue',

},
}

Then, in the Laboratory server you must create those registries, but they can point to the same laboratory:

laboratory_assigned_experiments = {
'exp1:dummy@Dummy experiments' : {

'coord_address' : 'experiment1:laboratory1@core_host',
'checkers' : ()

},
'exp1:electronics-lesson-1@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2'

},
'exp2:electronics-lesson-1@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2'

},
'exp3:electronics-lesson-1@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2'

},
'exp4:electronics-lesson-1@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2'

},
'exp5:electronics-lesson-1@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2'

},
}

This way, five students will be able to enter to the laboratory at the same time, and they will be able to interact each
other. The main problem is that by default, the server API does not support knowing which student is submitting each
request, since the methods are essentially something like:

String sendCommand(String command);

However, there is other API, called the Concurrent API (see WebLab-Deusto server (Python)), not supported at the
moment by most of the libraries but yes by the Python experiments, which supports this. It which basically adds a
lab_session_id string to the beginning of each parameter. That way, the method for sending commands, for
instance, is as follows:

174 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

String sendCommand(String labSessionId, String command);

Using this, the Experiment developer can identify who is accessing in the laboratory and reply different messages to
each user. So as to configure this, the Laboratory server must use the following api:

laboratory_assigned_experiments = {
'exp1:dummy@Dummy experiments' : {

'coord_address' : 'experiment1:laboratory1@core_host',
'checkers' : ()

},
'exp1:electronics-lesson-1@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2_concurrent'

},
'exp2:electronics-lesson-1@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2_concurrent'

},
'exp3:electronics-lesson-1@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2_concurrent'

},
'exp4:electronics-lesson-1@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2_concurrent'

},
'exp5:electronics-lesson-1@Electronics experiments' : {

'coord_address' : 'electronics:exp_process@exp_host',
'checkers' : (),
'api' : '2_concurrent'

},
}

3.2.5 Step 4: Add the experiment server to the database and grant permissions

At this point, we have the Experiment server running, the Laboratory has registered the Experiment server and the
Core server has registered that this experiment has an associated scheduling scheme (queue) and knows in which
Laboratory server it is located.

Now we need to make it accessible for the users. The first thing is to register the remote laboratory in the database.
So, start the WebLab-Deusto instance:

$ weblab-admin start sample

Go to the administrator panel by clicking on the top right corner the following icon:

You will see this:

3.2. Remote laboratory deployment 175

WebLab-Deusto Documentation, Release 5.0

On it, go to Experiments, then on Categories, and then on Create. You will be able to add a new category
(if it did not exist), such as Electronics experiments, and click on Submit:

Then, go back to Experiments, then Experiments, and then on Create. You will be able to add a new
experiment, such as electronics, using the category just created. The Start and End dates refer to the usage data.
At this moment, no more action is taken on these data, but you should define since when the experiment is available
and until when. For now, make sure that the client is js:

176 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

And also make sure that later you select builtin and in html.file you type nativelabs/dummy.html:

Then click on Save. At this moment, the laboratory has been added to the database. Now you can guarantee the
permissions on users. So as to do this, click on Permissions, Create. Select that you want to grant permission
to a Group, of permission type experiment_allowed.

3.2. Remote laboratory deployment 177

WebLab-Deusto Documentation, Release 5.0

And then you will be able to grant permissions on the developed laboratory to a particular group (such as Administra-
tors):

From this point, you will be able to use this experiment from the main user interface. If you see this:

178 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

And once you click on reserve you’re sending commands to the experiment and receiving them back, everything is
fine.

However, you should create your own client, and you have to configure it in the page where you added the lab. You
can edit it by going to Experiments and clicking on the edit button next to the lab you have just created. However,
the particular configuration depends on the approach taken:

• If you are developing a managed laboratory (regardless if you are using Python or an XML-RPC experiment),
jump to Configuring the client in a managed laboratory.

• If you are developing an unmanaged laboratory, jump to Configuring the client in an unmanaged laboratory.

Configuring the client in a managed laboratory

We strongly encourage you to develop clients in JavaScript. However, we also support Adobe Flash (while most
mobile devices do not support it) and Java applets (while most web browsers do not support them nowadays). This
section explains how to modify the configuration to support the three options:

• JavaScript

• Java applets

• Flash

JavaScript

By default, in the previous steps we selected that the client would be js, which is fine if you are developing a JavaScript
laboratory. However, we also selected the builtin option and the nativelabs/dummy.html html file:

3.2. Remote laboratory deployment 179

WebLab-Deusto Documentation, Release 5.0

The builtin option (which by default is false) reports that the file (nativelabs/dummy.html) is provided by
WebLab-Deusto, so it finds it in its local directories. However, when you create a WebLab-Deusto instance, there is
a directory called pub. Whatever you put in this directory will be publicly available to the Internet on /weblab/
web/pub/.

You can try to make a file called example.txt and put it in this directory. Going to http://localhost:12345/weblab/
web/pub/example.txt or http://localhost/weblab/web/pub/example.txt (depending on if you’re using Apache or the
development server) should show you the file. Furthermore, in the Administration Panel, in System -> Public
directory you can also modify the files (while this feature is only fully functional when using Apache).

Whenever you disable the builtin option, WebLab-Deusto will search for the file in this directory (unless in html.
file you put something that starts by http:// or https://, in which case the absolute url will be used; for
example if you put the files in a different server).

So, for starting, the best option is to copy the dummy.html example to this directory. So you might go to dummy.html
in github and click on the Raw button to access the raw file, and download to the pub directory.

Once downloaded, they will be in /weblab/web/pub/dummy.html. However, the internal includes to other
JavaScript files will not work. In particular, the following code is not correct:

<script type="text/javascript" src="../js/jquery.min.js"></script>
<script type="text/javascript" src="../weblabjs/weblab.v1.js"></script>

Since those two directories (../js/jquery.min.js) do not exist anymore. So either you change it by an absolute
URL:

<script type="text/javascript" src="/weblab/static/js/jquery.min.js"></script>
<script type="text/javascript" src="/weblab/static/weblabjs/weblab.v1.js"></script>

or you replace it by a proper relative path:

<script type="text/javascript" src="../static/js/jquery.min.js"></script>
<script type="text/javascript" src="../static/weblabjs/weblab.v1.js"></script>

Note: This is assuming that you are locating dummy.html in the pub directory directly. If you move it to a
directory inside pub (e.g., electronics/dummy.html), don’t forget to modify the paths accordingly (e.g., ../
../static...) or use absolute ones.

Once you have changed those paths, you can safely edit the experiment in the Administration Panel. To do so,
deactivate the builtin option and change the html.file to dummy.html:

180 Chapter 3. Remote laboratory development and management

http://localhost:12345/weblab/web/pub/example.txt
http://localhost:12345/weblab/web/pub/example.txt
http://localhost/weblab/web/pub/example.txt
https://github.com/weblabdeusto/weblabdeusto/blob/master/server/src/weblab/core/static/nativelabs/dummy.html
https://github.com/weblabdeusto/weblabdeusto/blob/master/server/src/weblab/core/static/nativelabs/dummy.html

WebLab-Deusto Documentation, Release 5.0

Now you can change the dummy.html or create other HTML from scratch and follow these steps to add it to the
pub directory and use it in other laboratories. You can now go to the Summary.

Java applets

Nowadays most web browsers do not support Java applets. For this reason, we highly recommend not using Java
applets for the development of remote laboratories. However, if you have a limited and controlled audience and an
existing remote laboratory in Java, you can still use WebLab-Deusto.

First, you must compile the GWT client, as explained in gwt.

Then, you have to select the java client from the client list when editing an experiment. However, so as to load the
laboratory, additional parameters must be configured, such as where is the JAR file, what class inside the JAR file must
be loaded, and the size of the applet. An example of this configuration would be:

Those JAR files should be located in the public directory (see here), which will require you to re-compile and re-run
the setup script.

3.2. Remote laboratory deployment 181

https://github.com/weblabdeusto/weblabdeusto/tree/master/client/src/es/deusto/weblab/public

WebLab-Deusto Documentation, Release 5.0

Flash

Nowadays most mobile web browsers do not support Flash, and the Flash support is decreasing in regular web
browsers. For this reason, we highly recommend not using Flash apps for the development of remote laboratories.
However, if you have a limited and controlled audience and an existing remote laboratory in Flash, you can still use
WebLab-Deusto.

First, you must compile the GWT client, as explained in gwt.

In the case of Flash applications, the client from the list must be flash. However, so as to load a particular laboratory,
some additional parameters must be configured, such as where is the SWF file, the size of the application, or the
maximum time that WebLab-Deusto will wait to check if the Flash applet has been connected -e.g., 20 seconds-,
since sometimes the user uses a flash blocking application or a wrong version of Adobe Flash. An example of this
configuration would be:

Those SWF files should be located in the public directory (see here), which will require you to re-compile and
re-run the setup script.

Configuring the client in an unmanaged laboratory

In the case of the unamanged laboratories the process is very simple. When editing the experiment in the administration
panel as detailed above, simply select the redirect client:

This way, whenever the user can access the laboratory, it will be redirected to it automatically. You don’t need to deal
with any client-side code.

3.2.6 Summary

Congratulations! WebLab-Deusto requires four actions to add a new experiment, explained in this section and on this
figure:

These four actions are registering the new Experiment server, modifying the configuration of the Laboratory server
and the Core server and adding the experiment to the database using the Admin panel.

After doing this, you may start sharing your laboratories with other WebLab-Deusto deployments, as stated in the
following section.

182 Chapter 3. Remote laboratory development and management

https://github.com/weblabdeusto/weblabdeusto/tree/master/client/src/es/deusto/weblab/public

WebLab-Deusto Documentation, Release 5.0

Fig. 11: Configure the experiment as redirect.

Fig. 12: Steps to deploy a remote laboratory in WebLab-Deusto.

3.2. Remote laboratory deployment 183

WebLab-Deusto Documentation, Release 5.0

3.3 Remote laboratory sharing

Table of Contents

• Remote laboratory sharing

– Introduction

– Consuming other remote laboratories

* Registering a scheduling system for the experiment

* Add the experiment server to the database and grant permissions

– Sharing your remote laboratories

* Create a user for the foreign entity

* Grant permissions on that laboratory to this entity

– Exchanging or selling accesses to your labs on LabsLand

3.3.1 Introduction

WebLab-Deusto supports federation. This means that one WebLab-Deusto instance can share its laboratories with
other instances, as well as consume them.

Let’s imagine that there are two universities, UniA and UniB. If UniB is a provider, it will have registered one special
type of user (e.g., uni-b, with role federated (instead of student or administrator). UniB will guarantee
permissions to this user as if it was any other type of user. It can even be part of a group. For example, it may grant
access to this user to an experiment called exp1.

Then, UniA can configure that it will use UniB with that user (and password) only to access exp1. It may also define
that exp1 at UniB is called experiment1 in UniA, so the name does not really matter. Furthermore, UniA can
re-share exp1 to a third University, called UniC, using the same approach (creating a new user, etc.).

During the entire process, UniB will not need to know who are those students coming from UniA, since UniB
trusts UniA and UniA trusts those students. Also, the consumer system, once the user has finished, will be able to
know what the user did, so if the administrator goes to the stored Logs in the administration panel, he will see what
commands were sent.

In this case, UniA is acting as a consumer, and UniB as a provider. It is also common that both act as consumers and
providers at the same time, sharing different laboratories each other. If it happens that both have copies of the same
laboratory (e.g., the VISIR remote laboratory is available in at least 6 universities in Europe), they can even define that
they will use the other system whenever their local resources are full. If UniA has 3 copies and UniB has 2 copies,
and 6 students come in any of them, the sixth student will be waiting for any of the 5 students to finish their session.

Since all the relations are defined as users, the administrators can also change the priority in the queue. For instance,
this enables that UniB defines that, in case of queue, their students will go first (and those from UniA later).

This section explains the technical details of how to do this. We will assume that the experiment in UniB is
called visir@Visir experiments, and in UniA we want to call it ud-electronics@Electronics
experiments.

Warning: If you want to use this (or any of the WebLab-Deusto laboratories), contact us, and we will create you
an account for your university. Please do not use the weblabfed user for anything but testing.

184 Chapter 3. Remote laboratory development and management

http://openlabs.bth.se/

WebLab-Deusto Documentation, Release 5.0

3.3.2 Consuming other remote laboratories

So as to consume a remote laboratory, the first step is that the external system creates a federated user. So as to test
this, we will use the WebLab-Deusto system in production with the following public credentials: weblabfed and
password. If you go there with your web browser, you will see the laboratories available for that account, and you
can even use them as a regular user.

Then, the process is quite similar to deploying a new laboratory, but without interacting with the Laboratory server or
the Experiment server, since they are already configured in the provider system.

Basically, we have to:

1. Registering a scheduling system for the experiment

2. Add the experiment server to the database and grant permissions

Note: As in all the steps that require changing the configuration of the server, you will need to restart the WebLab-
Deusto instance after applying all the changes.

Registering a scheduling system for the experiment

We have to configure the Core server to manage this remote laboratory. As explained in Step 3: Registering a schedul-
ing system for the experiment, the entire configuration of the Core server related to scheduling is by default in the
core_host_config.py file. It is placed there so if you have 4 Core servers in different instances (which is
highly recommended), you have the configuration in a single location. In this file, you will find information about the
database, the scheduling backend, etc.

There is one variable called core_scheduling_systems, which by default is as follows:

core_scheduling_systems = {
'dummy_queue' : ('PRIORITY_QUEUE', {}),
'robot_external' : weblabdeusto_federation_demo,

}

There, we have to add a new scheduler called external_electronics. We can do it directly:

core_scheduling_systems = {
'dummy_queue' : ('PRIORITY_QUEUE', {}),
'robot_external' : weblabdeusto_federation_demo,
'external_electronics' : ('EXTERNAL_WEBLAB_DEUSTO', {

'baseurl' : 'https://weblab.deusto.es/weblab/',
'username' : 'weblabfed',
'password' : 'password',
'experiments_map' : {'ud-electronics@Electronics

→˓experiments' : 'visir@Visir experiments'}
})

}

Or, more commonly, create other variable for that:

electronics_federation = ('EXTERNAL_WEBLAB_DEUSTO', {
'baseurl' : 'https://weblab.deusto.es/weblab/',
'username' : 'weblabfed',
'password' : 'password',
'experiments_map' : {'ud-electronics@Electronics

→˓experiments' : 'visir@Visir experiments'}

(continues on next page)

3.3. Remote laboratory sharing 185

https://weblab.deusto.es/weblab/

WebLab-Deusto Documentation, Release 5.0

(continued from previous page)

})

core_scheduling_systems = {
'dummy_queue' : ('PRIORITY_QUEUE', {}),
'robot_external' : weblabdeusto_federation_demo,
'external_electronics' : electronics_federation,

}

There, what we are detailing is that the scheduler identified by external_electronics will rely on the ex-
ternal server with the URL and credentials defined in the other variable. Note that there is a variable called
experiments_map, which maps local names with names in the foreign system. In this case, we are definining
that when using this scheduler for the local ud-electronics@Electronics experiments, it will instead
call the foreign system asking for visir@Visir experiments. If this variable is not provided or is empty
({}), it will simply ask for the same name as local (in this case, it would call ud-electronics@Electronics
experiment, which would not exist in the foreign system).

Now we have to register that we actually want to use this scheduler. For local experiments, there is a local variable
explained in Step 3: Registering a scheduling system for the experiment, which defines which Laboratory servers
manage which Experiment servers:

core_coordinator_laboratory_servers = {
'laboratory1:laboratory1@core_machine' : {

'exp1|dummy|Dummy experiments' : 'dummy1@dummy_queue',
},

}

However, in the federated environment, there is no such concept, since this mapping is already managed by the remote
system. What we need is to use other variable as follows:

core_coordinator_external_servers = {
'external-robot-movement@Robot experiments' : ['robot_external'],
'ud-electronics@Electronics experiments' : ['external_electronics'],

}

This is basically defining that the ud-electronics@Electronics experiments will be managed by the
scheduler external_electronics that we just defined.

Note: This configuration maps an identifier to a list of schedulers. This means that you can add multiple scheduler if
the particular laboratory was deployed in more than one system. For instance, it could define:

core_coordinator_external_servers = {
'external-robot-movement@Robot experiments' : ['robot_external'],
'ud-electronics@Electronics experiments' : ['electronics-deusto', 'electronics-

→˓uned'],
}

And your system will use both universities (as long as you have the credentials for both configured in the schedulers
variable).

Furthermore, this configuration is not incompatible with local laboratories. If you had the
core_coordinator_laboratory_servers configured using the same identifier pointing to a local
scheduler, the system will use first the local resources, and if they are in a queue it will use the remote resources. This
is how you can implemented distributed load balancing.

186 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Add the experiment server to the database and grant permissions

The last step is to add the laboratory to the database and grant permissions to the students. This process is exactly the
same as defined in Step 4: Add the experiment server to the database and grant permissions.

Go to the administrator panel by clicking on the top right corner the following icon:

You will see this:

On it, go to Experiments, then on Categories, and then on Create. You will be able to add a new category
(if it did not exist), such as Electronics experiments, and click on Submit:

3.3. Remote laboratory sharing 187

WebLab-Deusto Documentation, Release 5.0

Then, go back to Experiments, then Experiments, and then on Create. You will be able to add a new
experiment, such as ud-electronics, using the category just created. The Start and End dates refer to the usage
data. At this moment, no more action is taken on these data, but you should define since when the experiment is
available and until when. You can provide your own client if you want to provide further instructions in the beginning,
but typically here you will want to leave the blank client:

At this moment, the laboratory has been added to the database. Now you can guarantee the permissions on users. So
as to do this, click on Permissions, Create. Select that you want to grant permission to a Group, of permission
type experiment_allowed.

And then you will be able to grant permissions on the developed laboratory to a particular group (such as Administra-
tors):

188 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

From this point, you will be able to use this experiment from the main user interface.

3.3.3 Sharing your remote laboratories

Sharing a WebLab-Deusto laboratory is much easier than consuming one. You only need two steps:

1. Create a user for the foreign entity

2. Grant permissions on that laboratory to this entity

Create a user for the foreign entity

Go to the administrator panel by clicking on the top right corner the following icon:

You will see this:

3.3. Remote laboratory sharing 189

WebLab-Deusto Documentation, Release 5.0

There, go to General -> Users -> Create, and add a user using the Role federated, and providing a password
(click on “Add Auths” and select DB):

190 Chapter 3. Remote laboratory development and management

WebLab-Deusto Documentation, Release 5.0

Grant permissions on that laboratory to this entity

Still in the administration panel, click on Permissions, Create. Select that you want to grant permission to a
User instead of a group, of permission type experiment_allowed.

Then, select the laboratory you wish to grant access to, select the user, and select the rest of the arguments.

3.3. Remote laboratory sharing 191

WebLab-Deusto Documentation, Release 5.0

You may for instance establish that you allow 3600 seconds (1 hour) to the laboratory, but then the consumer side
system may establish that one particular group will only have permission to use it for 10 minutes. However, the
opposite is not possible, since even if the consumer system establishes that they can use it for one hour, when the
consumer system contacts the provider system, it will define that they only have permissions for 10 minutes.

3.3.4 Exchanging or selling accesses to your labs on LabsLand

LabsLand enables you to exchange lab accesses with other institutions, for free or for profit. LabsLand is the spin-off
of the WebLab-Deusto project, and it aims to support people to consume remote lab accesses in a daily basis. To
this end, it provides a marketplace for both providers and consumers of remote laboratories, where remote laboratory
providers can sell or share accesses to their remote laboratories, and consumers will have a clear idea of what they can
really consume, and at what cost.

If you develop a remote laboratory with WebLab-Deusto, we encourage you to access LabsLand and joining the
network.

192 Chapter 3. Remote laboratory development and management

http://labsland.com
http://labsland.com

CHAPTER 4

External systems

This section is intended for people who is going to integrate WebLab-Deusto in external systems, such as Learning
Management Systems, Content Management Systems, OAuth providers or similar.

4.1 External tools integration through federation

The easiest way to make it work from external tools is using the federation API. We currently provide APIs for various
programming languages (.NET, PHP, Python), and there are external efforts for other languages (Ruby).

4.1.1 Background

As described in the federation section, WebLab-Deusto supports federation. This means that two WebLab-Deusto
systems can exchange remote labs without dealing with particular users, as seen in the following figure:

This basically means that in the example, the system deployed in University A manages authentication and au-
thorization, so its the one who knows who are the users, etc. The contract between the systems of University

193

https://github.com/weblabdeusto/weblabdeusto/tree/master/server/consumers/dotnet
https://github.com/weblabdeusto/weblabdeusto/tree/master/server/consumers/php
https://github.com/weblabdeusto/weblabdeusto/blob/master/server/src/weblab/core/coordinator/clients/weblabdeusto.py
https://github.com/lms4labs/deustorb

WebLab-Deusto Documentation, Release 5.0

A and University B does not need to deal with users or groups: if University A can access three different
laboratories, then it’s University A who must choose which users can access each of these laboratories.

However, this idea is essentially what is aimed when integrating a remote laboratory in a Learning or Content Man-
agement System (LMS/CMS). It is the LMS the one that chooses what authentication mechanisms must be used, what
students are in which courses, and which courses should use which laboratories.

Therefore, using the federation APIs enable this second scheme, where the LMS/CMS is basically a WebLab-Deusto
consumer, and uses the same federation protocol that other LMS/CMS use:

If the federation protocol does not support transitivity (this is, a consumer may not re-share the laboratories to a third-
party consumer), the LMS/CMS would need to be configured with each external remote laboratory, which is not an
ideal situation. Typically, remote laboratory managers are the ones who deal with this type of contracts. However,
WebLab-Deusto supports transitivity (see the federation section), so it is possible to have a local WebLab-Deusto
instance, configure it in the LMS, and configure in this WebLab-Deusto instance as many external federated instances
as required.

4.1.2 How does it work?

Let’s take the example of the .NET consumer. It provides a set of data classes, but the main class is WebLabDeusto-
Client. Once you create an instance of it, you can create a session by passing custom credentials:

WebLabDeustoClient weblab = new WebLabDeustoClient("http://localhost/weblab/");

SessionId sessionId = weblab.Login("user", "password");

194 Chapter 4. External systems

WebLab-Deusto Documentation, Release 5.0

And you can use this session identifier to retrieve the list of available laboratories:

foreach(ExperimentPermission permission in weblab.ListExperiments(sessionId))
Console.WriteLine("I have permission to use {0} of category {1} during {2} seconds

→˓", permission.Name, permission.Category, permission.AssignedTime);

Which will print in the console something like:

I have permission to use ud-logic of the category PIC experiments during 150 seconds
I have permission to use submarine of the category Aquatic experiments during 150
→˓seconds
[...]

In addition, and more importantly, you can use the session identifier to perform a reservation. For instance, if you want
to create a reservation of the ud-logic laboratory, you can provide the following the laboratory and the category:

Reservation reservation = weblab.ReserveExperiment(sessionId, "ud-logic", "PIC
→˓experiments", consumerData);

Now, the fourth argument is consumerData, which represents additional information that the consumer system
(e.g., a LMS) will provide. This includes statistics information like the user-agent (i.e. what web browser is the student
using?), the referer (i.e. where did he come from?) or the IP address, but also information about the reservation itself:
who is the user, what is the maximum time that he will have for the laboratory (e.g., the consumer may have 150
seconds, but still the consumer can restrict it to 50 seconds for a group of students), or a certain priority:

// consumerData["user_agent"] = "";
// consumerData["referer"] = "";
// consumerData["mobile"] = false;
// consumerData["facebook"] = false;
// consumerData["from_ip"] = "...";

//
// Additionally, the consumerData may be used to provide scheduling arguments,
// or to provide a user identifier (that could be an anonymized hash).
//

consumerData["external_user"] = "an_external_user_
→˓identifier";
// consumerData["priority"] = 3; // the lower, the
→˓better
// consumerData["time_allowed"] = 100; // seconds
// consumerData["initialization_in_accounting"] = false;

Finally, the consumer will generate a URL that can safely be forwarded to the student. It includes a reservation
identifier, which can only be used for actions related to that reservation. For instance, the student can not use that
reservation_id to obtain the list of laboratories or create new reservations:

Console.WriteLine(reservation);

string url = weblab.CreateClient(reservation);

Console.WriteLine(url);

4.2 lms4labs

lms4labs is a joint open effort towards creating a generic tool for integrating different remote laboratories in different

4.2. lms4labs 195

http://github.com/lms4labs

WebLab-Deusto Documentation, Release 5.0

Learning Management Systems. At this moment, contributors are from the University of Deusto, Massachusetts
Institute of Technology and UNED.

The system right now works with WebLab-Deusto, and ongoing work is focused on supporting MIT iLabs. In the
current version, it supports Moodle 1.9, Moodle 2.x and .LRN, but it is easily extensible for other management systems.
Right now, ongoing work is focused on supporting the IMS LTI standard.

Refer to the lms4labs documentation for further information. The approach taken from the WebLab-Deusto perspec-
tive, is the one described in the federation for external tools section.

4.3 Other approaches

So as to consume WebLab-Deusto laboratories from external tools, the best and recommended way is to use the
federation system. However, it is also possible to support external tools through other schemes, such as OpenID or
OAuth 2.0 for authentication. Documentation regarding these systems is available in the authentication section.

196 Chapter 4. External systems

http://www.deusto.es
http://www.mit.edu
http://www.mit.edu
http://www.uned.es
http://lms4labs.readthedocs.org/en/latest/

CHAPTER 5

WebLab-Deusto Development

This section is intended for people who is going to contribute to the WebLab-Deusto system itself, rather than remote
laboratories on top of it.

5.1 Contribute

Table of Contents

• Contribute

– Introduction

– Documentation

– Translations

– Issue reporting

– Bug fixes

– New functionalities

– Add remote laboratories to the network

5.1.1 Introduction

This section is focused on enabling external people to contribute the project. WebLab-Deusto is an Open Source and
non for profit project. Help us to improve the system. You do not need to be a software developer to contribute!

197

WebLab-Deusto Documentation, Release 5.0

5.1.2 Documentation

Documentation is not as maintained as we would like. However, in every page in this documentation you’ll see a
Show source button that redirects you to this page in Github. If you find something that could be better described
in a different way, feel free to click there or go to our github doc repository, and then click on edit (given a file, search
for “History” and next to it you’ll find the Edit button). You will need to create a github account first and be logged in
with that account. Once you do it and save changes, we are notified and can apply the changes (but it will be clearly
acknowledged in github that you’re the person doing the change).

5.1.3 Translations

Translations are very welcome, and nowadays it’s pretty simple to contribute a translation. In the github repository,
you may go to the:

client/src/es/deusto/weblab/client/i18n

directory and find a file called IWebLabI18N.properties. If you’re in github, click on Raw to see the file and
you can save it. Make sure that the extension of the file is .propertieswhen you download it (and not .txt). This
is very important in Microsoft Windows, where certain browsers will change the extension calling it .properties.
txt: if you double click the file and it opens it with the text editor automatically, you should change the extension.
The other approach is to download the whole repository (you may have done it before) as detailed in Download using
git. Then, the file is located in the directory explained above, with the proper .properties extension.

Once you have the file, you may use the Google Translator Toolkit. You should take the file, open it, replace all the
‘’ by ‘. Then, you should go to the Google Translator Toolkit and upload the file. You will be able to select the
original language (english) and the target language (the one you want to translate it to). Then, it will show you an
interactive environment where Google has tried to translate most of the sentences. Many of them will be wrong, but
it is much easier to correct the file than to start from scratch. Furthermore, the tool is collaborative, so you may add
other translators and split the sentences among them.

Then, please submit the file to the WebLab-Deusto developers (Contact) to incorporate it to the project.

5.1.4 Issue reporting

WebLab-Deusto has bugs (it may work wrong in certain circumstances), as well as many things to improve in many
ways. If you find a bug, or if you think of particular things that should be changed (e.g., I miss a documentation page
for this, this tool is not generating what I expect here, I would like to be able to do this), please, tell us, we are eager
to hear you.

You may do this in public by reporting an issue in our issue tracker, which is in github. Or if you prefer doing this in
private, just contact us.

5.1.5 Bug fixes

If you find a bug, and you think you can fix it, you can do three things:

• Just publish it in the public mailing list or notify the developers (Contact).

• Create an account in github <http://github.com/>, fork the project by clicking on Fork, and in your copy of the
project, modify whatever you need. Then, create a pull request through github. We will be notified, review the
code and apply the changes.

198 Chapter 5. WebLab-Deusto Development

https://github.com/weblabdeusto/weblabdeusto/tree/master/docs/source
http://github.com/weblabdeusto/weblabdeusto/
http://translate.google.com/toolkit/
http://translate.google.com/toolkit/
https://github.com/weblabdeusto/weblabdeusto/issues/
http://github.com/weblabdeusto/weblabdeusto/

WebLab-Deusto Documentation, Release 5.0

5.1.6 New functionalities

If you want to create a new functionality not present in WebLab-Deusto, you are very welcome. Feel free to discuss it
with us in the mailing lists, or do a prototype. Also, refer to the WebLab-Deusto development section.

5.1.7 Add remote laboratories to the network

You have made a super cool remote lab using WebLab-Deusto? Please, contact us to do any (or all) of the following:

• Add the code to the WebLab-Deusto repository. We will make sure that if we change anything, the laboratory is
still compliant.

• Advertise it in the documents.

• Share it with other universities and schools.

• Add it to the demo account in the main WebLab-Deusto repository.

• Add it to the default account created when you create a new WebLab-Deusto repository.

5.2 WebLab-Deusto development

Table of Contents

• WebLab-Deusto development

– Introduction

– Setting up the development environment

* Server side

* Sample environment

– Contributing

5.2.1 Introduction

This section covers documentation about how to work on the WebLab-Deusto development. If you want to develop a
remote laboratory instead of working in the middle layers, go to the Remote laboratory development section.

5.2.2 Setting up the development environment

This section assumes that you have successfully used the steps refered in the Installation: further steps section.

Server side

When developing the server side, it is best to create a new environment on which WebLab-Deusto is not deployed. To
do so, create a new virtualenv as explained in Installation, and install all the requirements, but do not run the python
setup.py install command.

So as to deploy the testing database (required to pass the tests), you need to run the following in the weblab/server
directory:

5.2. WebLab-Deusto development 199

WebLab-Deusto Documentation, Release 5.0

python develop.py --deploy-test-db --db-engine=mysql --db-create-db --db-ask-admin-
→˓passwd

Once you do this, you will be able to launch the server side tests, by running:

python develop.py

If you are developing and you think you want to do some static analysis of your code, run the following:

python develop.py --flakes

Finally, the develop.py script comes with many more options. Run the following to see them:

python develop.py --help

Sample environment

Note: To be written, but you may go to the server/launch directory and find many testing deployments. The
sample one is especially interesting, since whenever you make a change in the Python code, it is automatically
restarted.

5.2.3 Contributing

There are plenty of issues in the issue tracker at github. You may add new ones if you find things to change, but you
may also take the existing ones an fix them by your own.

Take a look at Contribute to find other ways to contribute to the project.

200 Chapter 5. WebLab-Deusto Development

https://github.com/weblabdeusto/weblabdeusto/issues/

CHAPTER 6

Appendixes

6.1 Download using git

Table of Contents

• Download using git

– Microsoft Windows

– Linux

– Mac OS X

6.1.1 Microsoft Windows

Git is a source control system. It enables you to download the code, keep track of what you have changed (if you make
any change), and you can easily download the latest code in the repository. There are different visual and command
line tools to use Git. Use the tool you’re more familiar with. Here we are going to detail the most basic one, which is
the standard system (command-line based).

So as to download git for Microsoft Windows, go to the git official page. An installer will be downloaded. The
installation process is straightforward: you just need to click on “Next” except for one point, which it says “Adjusting
your PATH environment”. In that step, select the second option (“Run Git from the Windows Command Prompt”):

201

http://git-scm.com/download/win

WebLab-Deusto Documentation, Release 5.0

Once the installation process is finished, you need to open the command prompt (“Start menu” -> “Run” -> type “cmd”
and press enter or “Windows menu” -> type “cmd” and press enter). On it, you may run the following:

C:\Users\John> cd \
C:\> git clone https://github.com/weblabdeusto/weblabdeusto.git weblab
Cloning into 'weblabdeusto'...
remote: Counting objects: 43259, done.
remote: Compressing objects: 100% (7927/7927), done.
remote: Total 43259 (delta 31828), reused 42870 (delta 31439)
Receiving objects: 100% (43259/43259), 47.13 MiB | 315 KiB/s, done.
Resolving deltas: 100% (31828/31828), done.
Checking out files: 100% (2729/2729), done.

From this point, you have downloaded the latest version of WebLab-Deusto. If you later wanted to upgrade the system
to a new release, you must use the following command:

C:\Users\John> cd \weblab
C:\weblab> git pull
Already up-to-date.
C:\weblab>

Feel free to try TortoiseGit (a graphical tool), which is open source and you can download it for free here, and apply
the same steps. Github also provides a useful tool for Microsoft Windows, while it requires registration in the system.

After downloading it you can go to the next step: Installing the requirements.

6.1.2 Linux

You need to install git. In most Linux distributions, a package is available. For instance, in Ubuntu, you may run:

user@machine:~$ sudo apt-get install git

If unsure, go to the GNU/Linux downloads page and follow the instructions. Once installed, you only need to download
the source code:

202 Chapter 6. Appendixes

http://code.google.com/p/tortoisegit/
http://windows.github.com/
http://git-scm.com/download/linux

WebLab-Deusto Documentation, Release 5.0

user@machine:~$ git clone https://github.com/weblabdeusto/weblabdeusto.git weblab

After downloading it you can go to the next step: Installing the requirements.

6.1.3 Mac OS X

You need to install git. By going to the official page, you will get an installer and instructions. Once installed, you
may open a terminal and run:

$ git clone http://github.com/weblabdeusto/weblabdeusto.git weblab

After downloading it you can go to the next step: Installing the requirements.

6.2 Boole-Deusto y Weblab-Deusto

6.2.1 Introducción

En esta guía se describe cómo utilizar Boole-Deusto con Weblab-Deusto. Las características de integración añadi-
das a Boole-Deusto hacen que sea posible y sencillo diseñar un circuito combinacional o un autómata, y probarlo
prácticamente al momento en un equipo real provisto por Weblab-Deusto.

Boole-Deusto soporta dos tipos distintos de circuitos:

• Circuitos combinacionales

• Autómatas

Puesto que existen diferencias significativas entre ambos tipos, se dedicará a cada uno una sección distinta de esta
guías.

6.2.2 Circuitos Combinacionales

Introducción

La mayor parte de características relacionadas con la creación de circuitos combinacionales no ha sufrido cambios con
respecto al Boole-Deusto original.

El Boole-Deusto modificado tiene este aspecto:

6.2. Boole-Deusto y Weblab-Deusto 203

http://git-scm.com/download/mac

WebLab-Deusto Documentation, Release 5.0

Como puede observarse, principalmente se han añadido algunos controles relacionados con Weblab a la parte superior
izquierda de la ventana.

En las secciones posteriores se describirá brevemente el propósito de estos nuevos controles, y se incluirá una guía
rápida paso a paso para crear y probar un sistema combinacional.

Controles de Weblab

Los controles añadidos a Boole-Deusto son dos, cuyo propósito se describirá brevemente a continuación.

204 Chapter 6. Appendixes

WebLab-Deusto Documentation, Release 5.0

Activación / desactivación de Weblab

Este control sirve para activar o desactivar el modo weblab. El modo weblab puede ser activado o desactivado en
cualquier momento. Cuando está desactivado, Boole-Deusto se comporta exactamente como el Boole-Deusto original.
Cuando está activado, sin embargo, se producen los siguientes efectos:

• Las tablas de entradas / salidas permiten elegir los nombres correctos, que se corresponden con las entradas /
salidas en Weblab.

• El código VHDL que Boole-Deusto genere será diferente al que normalmente generaría, ya que tendrá diversos
cambios orientados a hacerlo directamente compatible con el experimento FPGA de Weblab.

Warning: El sistema permite, al igual que el Boole-Deusto original, pero incluso en modo weblab, asignar
nombres arbitrarios de entradas y salidas, o incluso repetir nombres existentes. Si bien el sistema en general
funcionará de forma predecible al hacer ésto, los programas generados no serán compatibles (al menos, sin previa
modificación) con Weblab-Deusto. Por eso, para facilitar el uso conjunto, se recomienda utilizar siempre nombres
de la lista de entradas/salidas y nunca repetirlos.

Warning: En este momento existe un bug conocido que impide en ocasiones, estado en modo weblab, que
aparezcan las sugerencias de entradas / salidas de Weblab. Debido a ciertos motivos, esto tiende a suceder siempre
que se hace click por primera vez en la primera celda de la tabla de entradas y de salidas. Para evitarlo, se
recomienda hacer siempre click primero en otra celda. Es decir, en una celda que no sea la primera.

6.2. Boole-Deusto y Weblab-Deusto 205

WebLab-Deusto Documentation, Release 5.0

Botón de apertura de Weblab

El botón “Open Weblab” abrirá una ventana del navegador que esté configurado por defecto, y generalmente tras dar al
usuario la posibilidad de autenticarse, accederá directamente al experimento FPGA, lo que permitirá al usuario subir
inmediatamente el código VHDL que genere y probarlo de forma rápida y sencilla.

Note: En este momento, el experimento Weblab-FPGA, que es el utilizado para probar el código VHDL, requiere un
usuario registrado en Weblab que tenga ciertos privilegios. Sin dichos privilegios no será posible probar el código. En
caso de que se necesiten obtener tales privilegios, se recomienda ponerse en contacto con el equipo de Weblab-Deusto,
o con quien corresponda.

Guía: Creando y probando un sistema combinacional

En el transcurso de esta breve guía, crearemos con Boole-Deusto un nuevo sistema combinacional, que después pro-
baremos directamente en WebLab utilizando las nuevas características de integración.

Para esta guía, se asume que el usuario está algo familiarizado con los sistemas combinacionales, y con el Boole-
Deusto original.

1. Comenzamos la creación de un sistema combinacional.

2. Ahora, activaremos el modo Weblab, habilitando el control que se aprecia en la siguiente figura, y que nos
permitirá asignar fácilmente los nombres necesarios de las entradas/salidas, así como generar código VHDL
compatible con Weblab.

206 Chapter 6. Appendixes

WebLab-Deusto Documentation, Release 5.0

3. Con el modo Weblab habilitado, procedemos a dar un nomber al sistema, que en este caso será XOR-AND, ya
que, como veremos enseguida, calcular el XOR y el AND será su tarea.

4. Definimos dos entradas y dos salidas, y les asignamos en la tabla los nombres. En nuestro caso, las entradas
se corresponderán con los dos primeros “switches”, mientras que las salidas se corresponderán con los dos
primeros “leds”. Es importante que los nombres utilizados sean exactamente los sugeridos por Boole-Deusto al
estar en modo Weblab, ya que es el nombre el que los relacionará posteriormente con los componentes físicos
reales (switches, leds, etc) de los que consta Weblab. Queda así:

5. Hecho esto, definiremos normalmente la tabla de verdad para nuestro sistema. Es imprescindible hacer click en
“evaluar” tras definirla. La tabla que utilizaremos será la siguiente:

6.2. Boole-Deusto y Weblab-Deusto 207

WebLab-Deusto Documentation, Release 5.0

6. Una vez definida la tabla de verdad, podemos, si así lo deseamos, hacer uso de las múltiples características que
ofrece Boole-Deusto, tales como visualizar el circuito o los diagramas que le corresponden.

7. Para poder probar nuestro sistema combinacional en Weblab-Deusto, deberemos primero generar el código
VHDL. Es imprescindible asegurarse de que antes de generar el código, el modo Weblab esté habilitado. El
código que se genera por defecto (en el modo estándar) no es directamente compatible. Para generarlo, como en
el Boole-Deusto tradicional, deberemos utilizar el botón que se observa en la figura siguiente. Podemos nombrar
al archivo VHDL como deseemos.

8. Con el código generado, ya estamos prácticamente listos para probar el sistema combinacional. Si lo deseamos,
podemos echar un vistazo al código que hemos generado, o incluso modificarlo, siempre que respetemos ciertas
reglas impuestas por Weblab(principalmente, relacionadas con los nombres de entradas y salidas). Para probarlo,
haremos click en el botón “Open Weblab-FPGA”, que abrirá un navegador:

208 Chapter 6. Appendixes

WebLab-Deusto Documentation, Release 5.0

9. Una vez abierto el navegador en la página de Weblab, si no lo hemos hecho ya, deberemos autenticarnos. Una
vez autenticados, llegaremos a la pantalla del experimento Weblab-FPGA, en la cual deberemos elegir el archivo
VHDL que hemos previamente generado, de tal forma:

10. Tras seleccionar el archivo, deberemos darle a “reserve”, que reservará el experimento. Dependiendo del estado
de Weblab-Deusto, y de la la existencia o no de una cola de usuarios, transcurrirá más o menos tiempo antes de
que la reserva concluya. La figura a continuación es la pantalla que veremos una vez realizada la reserva.

6.2. Boole-Deusto y Weblab-Deusto 209

WebLab-Deusto Documentation, Release 5.0

11. Mientras esté presente la barra de progreso, el sistema estará, o bien sintetizando el código VHDL, o progra-
mando la placa. Puesto que especialmente la sintetización es un proceso lento, pueden llegar a transcurrir varios
minutos antes de que termine. Si la barra se detuviese con un error, se recomienda consultar la advertencia que
se incluye al final de esta sección. El resto de la guía asume que tanto la sintetización como la programación
son correctas.

12. Una vez que el programa ha sido correctamente sintetizado, y la placa correctamente grabada, veremos algo
similar a lo siguiente:

13. Finalmente, vemos que disponemos en primer lugar de una webcam, por la que podemos ver la placa física, que
está actualmente ejecutando nuestro sistema combinacional. Podemos ver también los leds, que actúan como
salidas, y diversos interruptores virtuales, que actúan como entrada física real a la placa, y mediante los cuales
podemos interactuar. En este caso, vemos que con los interruptores a “0-1” está encendido el segundo LED, y
apagado el primero, tal y como hemos definido en nuestra tabla de verdad.

14. Disponemos de un tiempo limitado para probar el sistema. Una vez que el tiempo expire, el sistema automáti-
camente volverá a la pantalla de reserva. Si necesitamos realizar más pruebas, deberemos reservar de nuevo.

210 Chapter 6. Appendixes

WebLab-Deusto Documentation, Release 5.0

Note: Los leds (Leds<0-8>), los interruptores (Switches<0-9>) y los botones (Buttons<0-3>) se ordenan de derecha
a izquierda. Esto implica, por ejemplo, que el Switch<0> en Boole-Deusto se corresponde con el interruptor de más a
la derecha, mientras que el Switch<1> sería el inmediatamente a su izquierda.

Warning: Si la barra se detuviese con un “compiling error” o con un “programming error”, significaría, en el
primer caso, que el proceso de sintetización ha fallado (quizás debido a un error de sintáxis), y en el segundo, que
el proceso de programación de la placa ha fallado. Si el error es del primer tipo (compiling error) se recomienda:

• Comprobar que se ha seleccionado el VHDL correcto.

• Comprobar que el VHDL se ha generado en modo Weblab.

• Comprobar que todas las entradas y salidas utilizan nombres válidos de la lista de entradas y salidas de
Weblab, y que por tanto no se han incluido entradas/salidas con nombres originales, ni entradas/salidas con
nombres repetidos.

• Comprobar que no se hayan realizado modificaciones manuales al VHDL, o que en caso de que se hayan
realizado, no contengan errores.

Si con las diversas comprobaciones anteriores no se consigue resolver el problema, o si el error es de programación (grabación), se recomienda:

• Esperar un tiempo, y volver a intentarlo más tarde.

• Contactar con los administradores de Weblab-Deusto.

6.2.3 Autómatas

Introducción

El segundo tipo de circuito con el que Boole-Deusto puede trabajar son los autómatas. Esta característica, que ya
existía en el boole-deusto original, ha sido extendida añadiendo capacidad de integración inmediata con Weblab-
Deusto y en concreto sus experimentos FPGA. Tras esta extensión, es ahora posible diseñar y definir un autómata
gráficamente, e inmediatamente observarlo en funcionamiento (e interactuar con él) en un FPGA físico real en Weblab-
Deusto.

6.2. Boole-Deusto y Weblab-Deusto 211

WebLab-Deusto Documentation, Release 5.0

Aspectos básicos con Weblab-Deusto

En su versión actual, para promover la simplicidad, esta parte de Boole-Deusto no requiere (ni permite) elegir las
correspondencias entre las salidas y entradas de los estados, y las salidas y entradas de Weblab-Deusto. En vez de eso,
se ha de saber que la correspondencia entre entradas y salidas siempre es la misma:

Las entradas son siempre los interruptores. De este modo, si tenemos por ejemplo un estado S0 que “recibe” dos
entradas, estas dos entradas se corresponderán con los últimos dos interruptores (los de más a la derecha).

Las salidas son siempre los LEDs. De este modo, si tenemos un estado S0 que tiene dos salidas, estas dos salidas se
corresponderán con los últimos dos LEDs (los de más a la derecha). Si la salida del estado es por ejemplo “01”, el
LED de más a la derecha estará encendido, y el LED inmediatamente a su izquierda apagado.

Existe un botón que devuelve al autómata a su estado inicial. Este botón es siempre el último botón de Weblab (el de
más a la derecha).

Controles de Weblab

Los controles añadidos a Boole-Deusto en la integración con Weblab-Deusto son principalmente de dos tipos:

Exportación a código Weblab-VHDL

Mediante el uso de estas opciones, es posible generar código VHDL que sea inmediatamente compatible con el ex-
perimento FPGA de Weblab-Deusto. Para conseguir esta compatibilidad, el código generado utilizará nombres de
entradas y salidas compatibles con las de Weblab-Deusto (definidas en un UCF).

Podemos observar que existen varias opciones para generar el código. Cada una de esas opciones corresponde a un
tipo de reloj diferente, que utilizará el autómata. Los relojes disponibles son los siguientes:

Reloj Interno (Internal Clock)

Utiliza el reloj interno de la FPGA. Su frecuencia es bastante alta, lo que lo hace poco adecuado para aquellos casos
en los que el comportamiento del autómata requiera de alguna clase de sincronización de las entradas y salidas con el
reloj.

212 Chapter 6. Appendixes

WebLab-Deusto Documentation, Release 5.0

Reloj Weblab (Weblab Clock)

Algo más lento que el reloj interno. Está provisto por el propio Weblab-FPGA, y su frecuencia puede ser controlada
de forma limitada, mediante un slider en el propio experimento.

Reloj Interruptor (Switch Clock)

El último interruptor (el de más a la izquierda) actúa como reloj. Esto lo hace muy adecuado para aquellos casos en los
que se desee probar el autómata teniendo un absoluto control sobre el reloj. Esto podría incluir, por ejemplo, aquellos
casos en los que es necesario sincronizar las entradas con él.

Reloj Botón (Button Clock)

Similar al anterior, en este caso el botón de más a la izquierda actúa como reloj. De nuevo, muy adecuado para aquellos
casos en los que se desee probar el autómata teniendo un absoluto control sobre el reloj.

Warning: Debido a limitaciones presentes ya en el Boole-Deusto original, se recomienda comprobar el autómata
antes de intentar generar el código. Ciertos errores, como el no asignar salidas a un estado, pueden hacer que el
programa deje de responder.

Warning: Si se utiliza la generación de código VHDL estándar de Boole-Deusto (la que no hace mención sobre
relojes, ni sobre Weblab), el VHDL generado NO será compatible con Weblab-Deusto. Al menos, sin aplicar
manualmente grandes modificaciones.

Note: Nota de implementación En la práctica, el reloj a utilizar no lo determina el VHDL en sí, sino el archivo de
restriccines (UCF) que se utilice. Boole-Deusto añade una directiva como comentario al VHDL, como por ejemplo
`%%%CLOCK:SWITCH%%%`. Esta directiva, en absoluto original de Xilinx, es detectada por el propio Weblab-
Deusto, que sintetizará el VHDL provisto utilizando un UCF u otro. Cuando se utiliza Weblab-Deusto FPGA también
es posible usar dichas directivas en código VHDL escrito manualmente.

6.2. Boole-Deusto y Weblab-Deusto 213

WebLab-Deusto Documentation, Release 5.0

Apertura de Weblab

El botón “Open Weblab” abrirá una ventana del navegador que esté configurado por defecto, y generalmente tras dar al
usuario la posibilidad de autenticarse, accederá directamente al experimento FPGA, lo que permitirá al usuario subir
inmediatamente el código VHDL que genere y probarlo de forma rápida y sencilla.

Note: En este momento, el experimento Weblab-FPGA, que es el utilizado para probar el código VHDL, requiere un
usuario registrado en Weblab que tenga ciertos privilegios. Sin dichos privilegios no será posible probar el código. En
caso de que se necesiten obtener tales privilegios, se recomienda ponerse en contacto con el equipo de Weblab-Deusto,
o con quien corresponda.

Note: Esta sección del manual, y el propio Boole-Deusto en lo relacionado a estos aspectos, se encuentran actual-
mente en desarrollo.

214 Chapter 6. Appendixes

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

215

	General
	Users
	Remote laboratory development and management
	External systems
	WebLab-Deusto Development
	Appendixes
	Indices and tables

